Araştırma Makalesi
BibTex RIS Kaynak Göster

Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?

Yıl 2018, , 2189 - 2201, 15.11.2018
https://doi.org/10.24106/kefdergi.2990

Öz

İki ve üç
boyutlu nesnelerin birbirleriyle ve çevreyle ilişkilerinin anlaşılmasında,
geometriyle ilişkili önemli kavramların başında gelen uzamsal yeteneğin payı
kuşkusuz büyüktür. Uzamsal yeteneği ortak tanımlara bakıldığında uzamsal
yetenek üç boyutlu uzayda cisimleri ve bileşenlerini zihinde hareket
ettirebilme ve canlandırabilme yeteneği olarak tanımlanmıştır. Öğrencilerin
geometrik düşünme düzeylerini geliştirmek, matematik eğitiminin en kritik
amaçlarından biri olmalıdır. Bu araştırmanın amacı ortaokul öğrencilerinin açık
uçlu sorular ve çoktan seçmeli sorular oluşan testlerin uzamsal yetenek
düzeyini belirlemede etkililiğinin karşılaştırılmasıdır. Bu iki test yönteminin
öğrencilerin uzamsal yetenek becerilerini belirlemede nasıl farklılıklar ortaya
çıkardığı belirlenmiştir. Bu amaç doğrultusunda bu araştırma nitel
yaklaşımlardan durum çalışması olarak desenlenmiştir. Araştırmanın amacına
uygun olarak amaçlı örnekleme yöntemi kullanılmıştır. Geometri konusunda
ortaokul seviyesinde en fazla bilgi düzeyine sahip olan 8.sınıf öğrencileri
seçilmiştir. Araştırmanın çalışma grubunu Türkiye’nin kuzeyinde bir devlet
ortaokulunun 8.sınıfında öğrenim gören 77 öğrenci oluşturmuştur. Araştırmada
veri toplama aracı olarak alan yazında kabul gören MGMP isimli uzamsal yetenek
testinden seçilen 10 soru hem açık uçlu olarak hem de çoktan seçmeli olarak
kullanılmıştır. Araştırma bulgularına göre 77 öğrencinin 10 soruya çoktan
seçmeli olarak verdikleri yanıtların %68’i doğru olurken, bu 10 soruya açık
uçlu olarak verdikleri yanıtların sadece %45’i doğru olarak kodlanmıştır.
  Buna göre öğrencilerin uzamsal yeteneğini
belirlemek için tercih edilen çoktan seçmeli testte öğrencilerin daha başarılı
sonuç gösterdikleri anlaşılabilir. Ancak buna karşın öğrencilerin özellikle
çizim becerisi gerektiren sorularda (soru11, 20, 22 ve 23) öğrencilerin çoktan
seçmeli sorularda daha başarılı oldukları görülmüştür.

Kaynakça

  • Aktaş, M. ve Aktaş, D. Y. (2011). 8. Sınıf öğrencilerinin dörtgenleri köşegen özelliklerinden yararlanarak tanıma sürecinin incelenmesi, 10. Matematik Sempozyumu. İstanbul, Işık Üniversitesi.
  • Aktaş, M. C., ve Aktaş, D. Y. (2012). Öğrencilerin dörtgenleri anlamaları: paralelkenar örneği. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 319–329.
  • Altun, M. (2008). İlköğretim İkinci Kademede (6, 7 ve 8. sınıflarda) Matematik Öğretimi. Erkam Matbaacılık, 6. Baskı, Bursa.
  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241. Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Eğitim Yayıncılığı.
  • Baki,A ., Kösa, T., ve Güven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre-service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
  • Başaran-Şimşek, E. (2012). Dinamik Geometri Yazılımı Kullanmanın İlköğretim 6. Sınıf Öğrencilerinin Matematik Dersindeki Akademik Başarılarına ve Uzamsal Yeteneklerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • Battista, C. (2007). Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain and cognition, 66(3), 260-264.
  • Battista, M., Wheatley, G. ve Talsma, G. (1989). Spatial visualization, formal reasoning, and geometric problem-solving strategies of preservice elementary teachers. Focus on Learning Problems in Mathematics, 11(4), 17-30.
  • Baykul, Y. (2005). İlköğretimde Matematik Öğretimi (1-5. Sınıflarda). Ankara: Pegem Yayıncılık.
  • Bishop AJ (1980) Spatial abilities and mathematics education: A review. Educational Studies in Mathematics, 11(1980), 257-269. Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-17.
  • Bridgeman, B. (1992). A comparison of quantitative questions in open‐ended and multiple‐choice formats. Journal of Educational Measurement, 29(3), 253-271.
  • Bulut S. ve Köroğlu S., 2000, On Birinci Sınıf Öğrencilerinin ve Matematik Öğretmen Adaylarının Uzaysal Yeteneklerinin İncelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 18, 56-61.
  • Burnett, S. A., ve Lane, D. M. (1980). Effects of academic instruction on spatial visualization. Intelligence, 4(3), 233-242.
  • Carpenter, P. A., ve Just, M. A. (1986). Spatial ability: An information processing approach to psychometrics. Advances in the psychology of human intelligence, 3, 221-253.
  • Carroll, J. B. (1993). Human cognitive abilities:A survey of factor-analytic studies. New York: Cambridge University Press.
  • Casey, M. B., Nuttall, R. L., ve Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 28-57.
  • Chang, Y. (2014). 3D-CAD effects on creative design performance of different spatial abilities students. Journal of ComputerAssisted Learning, 30, 397-407
  • Clements, D. H. ve Battista, M.T. (1992). Geometry and Spatial Reasoning. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning, 420-464. New York:Macmillan Publishing Company.
  • Clements, D.H. ve McMillen, S. (1996). Rethinking “Concrete” Manipulatives. Teaching Children Mathematics, 2(5), 270-279.
  • Clements, D.H., ve Sarama, J. (2007). Early childhood mathematics learning. In F. Lester (Ed.), Handbook of Research on Teaching and Learning Mathematics (2nd ed.). Greenwich, CT: Information Age Publishing
  • Dane, A. ve Başkurt, H. (2011). İlköğretim 6,7 ve 8. Sınıf Öğrencilerinin Doğru Parçası, Doğrusallık, Işın ve Açı Kavramlarını Algılama Düzeyleri. Erzincan Eğitim Fakültesi Dergisi,13(2). 23-35.
  • Del Grande, J. (1990). Spatial sense. The Arithmetic Teacher, 37(6), 14.
  • Dere, E. (2017). Web Tabanlı 3B Tasarım Uygulamalarının Ortaokul Öğrencilerinin Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkisi. Yüksek Lisans Tezi, Başkent Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the learning of mathematics,(17). 11-18.
  • Downs, R., ve DeSouza, A. (2006). Learning to think spatially: GIS as a support system in the K–12 curriculum. National Academies Press.
  • Durmuş, S. (2012). Geometrik Düşünme ve Geometrik Kavramlar. J. A. Walle, K. S. Karp, & J. M. Bay-Williams içinde, İlkokul ve Ortaokul Matematiği Gelişimsel Yaklaşımla Öğretim (s. 400). Ankara: Nobel.
  • Ergün, S. (2010). İlköğretim 7. Sınıf Öğrencilerinin Çokgenleri Algılama, Tanımlama ve Sınıflama Biçimleri, Yayınlanmamış Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Fennema, E., ve Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 184-206.
  • Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. Proceedings of the 18th International Conference for the Psychology of Mathematics Education (Vol.1, p. 328), USA.
  • Gün, E. (2014). Artırılmış Gerçeklik Uygulamalarının Öğrencilerin Uzamsal Yeteneklerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-157.
  • Heigham, J. ve Croker, R.A. (2009). Qualitative Research in Applied Linguistics A Practical İntroduction. Palgrave Macmillan, New York.
  • İça Turhan, E. (2010). Bilgisayar Destekli Perspektif Çizimlerin Sekizinci Sınıf Öğrencilerinin Uzamsal Yeteneklerine, Matematik, Teknoloji ve Geometriye Karşı Tutumlarına Etkisi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Jackson, C., Lamar, M., Wilhelm, J. A., ve Cole, M. (2015). Gender and Racial Differences: Development of Sixth Grade Students’ Geometric Spatial Visualization within an Earth/Space Unit. School Science and Mathematics 115(7), 330-343.
  • Jones, K. (2002). Issues in the Teaching and Learning of Geometry. In: Linda Haggarty (Ed), Aspects of Teaching Secondary Mathematics: perspectives on practice. London: RoutledgeFalmer. Chapter 8, pp 121-139. ISBN: 0-415-26641-6).
  • Kalay, H. (2015). 7. Sınıf Öğrencilerinin Uzamsal Yönelim Becerilerini Geliştirmeye Yönelik Tasarlanan Öğrenme Ortamının Değerlendirilmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Eğitim Bilimleri Enstitüsü. Trabzon.
  • Kimura, D. (1999). Sex and cognition. Cambridge, MA: MIT Press
  • Kösa, T. (2016). Uzamsal Yetenek: Tanımı ve Bileşenleri. E. Bingölbali, S. Arslan, & İ. Ö. Zembat içinde, Matematik Eğitiminde Teoriler (s. 337-338). Ankara: Pegem Akademi.
  • Linn, M. C., ve Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
  • Lohman, D. F. (1993). Spatial ability. Human abilities: Their nature and measurement, 97, 116.
  • Malara, N. (1998). On the difficulties of visualization and representation of 3D objects in middle school teachers. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME International Conference, 3, 239-246.
  • Martin-Guiterrez, J., Gil, F. A., Contero, M., ve Saorin, J. l. (2010). Dynamic Three-Dimensional Illustrator for Teaching Descriptive Geometry and Training Visualisation Skills.
  • McGee, M.G. (1979). Human spatial abilities: psychometric studies and environmental , genetic, hormonal and influences. Psychological Bulletin, 86(5), 889-918.
  • MEB (2015a). Ortaokul matematik dersi 5-8. Sınıflar öğretim programı. Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı.
  • MEB (2015b). Ortaöğretim matematik dersi 9-12. Sınıflar öğretim programı. Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı.
  • Monaghan, F. (2000). What difference does it make? Children’s views of the differences between some guadrilaterals. Educational studies in mathematics, 42(2), 179-196.
  • Morse, J. M. (2003). Principles of mixed methods and multimethod research design. Handbook of mixed methods in social and behavioral research, 1, 189-208.
  • NCTM (National Council of Teachers of Mathematics) (2000). Principles and standards for school mathematics, Reston, VA: Author Okagaki, L., ve Frensch, P. A. (1996). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Interacting with video, 11, 115-140.
  • Olkun, S. (2003). Making Connections: Improving Spatial Abilities with Engineering Drawing Activities. International Journal of Mathematics Teaching and Learning, 4(2), 86-91.
  • Ozuru, Y., Briner, S., Kurby, C. A., & McNamara, D. S. (2013). Comparing comprehension measured by multiple-choice and open-ended questions. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 67(3), 215.
  • Özkan, M. (2015). 7. sınıf öğrencilerinin çokgenlerde ve özel dörtgenlerde yaptıkları kavram yanılgılarının incelenmesi. Yayınlanmamış Yüksek Lisans Tezi. Çukurova Üniversitesi, Sosyal Bilimler Enstitüsü, Adana.
  • Parzysz, B. (1988). Problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19(1), 79–92.
  • Parzysz, B. (1991). Representations of space and students’ conceptions at high school level. Educational Studies in Mathematics, 22(6), 575–593.
  • Sowder, J. T., ve Wearne, D. (2006). What do we know about eighth-grade student achievement? Mathematics Teaching in the Middle School.
  • Stockdale, C., ve Possin, C. (1998). Spatial Relations and Learning. ARK Foundation, Allenmore Medical Center.
  • Strong, S., ve Smith, R. (2002). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of industrial technology, 18(1), 1-6.
  • Tan, Ş. (2009). Öğretimde ölçme ve değerlendirme: KPSS el kitabı. Pegem Akademi
  • Tartre, L.A. (1990). Spatial Orientation Skill and Mathematical Problem Solving. Journal for Research in Mathematics Education, 21, 216-229.
  • Titus, S., & Horsman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57(4), 242-254.
  • Thurstone, L. L.(1938) Primary Mental Abilities, Psychometric Monographs, 1–121.
  • Turğut, M. ve Nagy-Kondor, R. (2013). Spatial visualization skills of Hungarian and Turkish prospective mathematics teachers. International Journal for Studies in Mathematics Education, 6(1), 168-183.
  • Turğut, M. (2007). İlköğretim II. Kademede Öğrencilerin Uzamsal Yeteneklerinin İncelenmesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü. İzmir.
  • Turgut, M. F. ve Baykul, Y. (2012). Eğitimde ölçme ve değerlendirme. Ankara: Pegem Akademi
  • Tversky, B. (2005). Visuospatial reasoning. The Cambridge handbook of thinking and reasoning, (13), 209-240.
  • Ubuz, B. ve Üstün, I. (2003). Figural and conceptual aspects in identifying polygons. Proceedings of the 27th International Conference for the Psychology of Mathematics Education (Vol.1, p. 328), USA.
  • Usiskin, Z. (1987). Why elementary algebra can, should, and must be an eighth-grade course for average students. The Mathematics Teacher, 80(6), 428-438.
  • Wai, J., Lubinski, D., ve Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. 6. Baskı. Ankara: Seçkin Yayıncılık.
  • Yıldız, B. (2009). Üç-Boyutlu Sanal Ortam ve Somut Materyal Kullanımının Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkisi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara.
  • Yolcu, B. (2008). Altıncı Sınıf Öğrencilerinin Uzamsal Yeteneklerini Somut Modeller ve Bilgisayar Uygulamaları ile Geliştirme Çalışmaları. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Yurt, E. (2011). Sanal Ortam ve Somut Nesneler Kullanılarak Gerçekleştirilen Modellemeye Dayalı Etkinliklerin Uzamsal Düşünme ve Zihinsel Çevirme Becerilerine Etkisi. Yüksek Lisans Tezi, Selçuk Üniversitesi Eğitim Bilimleri Enstitüsü. Konya.
  • Yüksel, N. S. (2013). Uzamsal Yetenek, Bileşenleri ve Uzamsal Yeteneğin Geliştirilmesi Üzerine. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara.
  • Zimmerman, W. (1991). Editors' introduction: What is mathematical visualization? In W. Zimmerman ve S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 1—7). Washington, DC: Mathematical Association of America .

Which Types of Questions Must Be Used In Order To Determine Spatial Ability?

Yıl 2018, , 2189 - 2201, 15.11.2018
https://doi.org/10.24106/kefdergi.2990

Öz

The
understanding of two-dimensional and three-dimensional objects in the
environment, the spatial ability is an important concept. Spatial ability have
been defined in different ways by many researchers when looking at the field
literature. Given the common definitions, spatial ability is defined as the ability
to move and visualize three-dimensional space objects and components in their
minds. For this reason, the aims of this research is to determine the extent to
which the 8th grade students have open-ended questions and multiple choice
tests and spatial skill levels. Another goal is to compare two different test
methods that measure spatial skills. For this purpose, this research was
designed as a case study from qualitative approaches. A purposeful sampling
method was used for the purpose of the study. 8th grade students with the
highest level of knowledge in geometry at secondary school level were selected.
The working group of the study is composed of 77 students studying in a high
school of Northern Turkey. The 10 questions selected from the MGMP spatial
ability test, which was accepted in the field as a data collection tool in the
survey, were used both as open ended and multiple choice. According to research
findings, 68% of the answers given by 77 students as multiple choice were
correct, only 45% of the answers given as open ended were correctly coded.
Accordingly, it can be understood that students are more successful in the
multiple-choice test, which is the preferred method for determining the spatial
competence of the students. On the other hand, however, it has been seen that
students are more successful in multiple-choice questions, especially when it
comes to drawing skills (questions 11, 20, 22 and 23).

Kaynakça

  • Aktaş, M. ve Aktaş, D. Y. (2011). 8. Sınıf öğrencilerinin dörtgenleri köşegen özelliklerinden yararlanarak tanıma sürecinin incelenmesi, 10. Matematik Sempozyumu. İstanbul, Işık Üniversitesi.
  • Aktaş, M. C., ve Aktaş, D. Y. (2012). Öğrencilerin dörtgenleri anlamaları: paralelkenar örneği. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 319–329.
  • Altun, M. (2008). İlköğretim İkinci Kademede (6, 7 ve 8. sınıflarda) Matematik Öğretimi. Erkam Matbaacılık, 6. Baskı, Bursa.
  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241. Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Eğitim Yayıncılığı.
  • Baki,A ., Kösa, T., ve Güven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre-service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
  • Başaran-Şimşek, E. (2012). Dinamik Geometri Yazılımı Kullanmanın İlköğretim 6. Sınıf Öğrencilerinin Matematik Dersindeki Akademik Başarılarına ve Uzamsal Yeteneklerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • Battista, C. (2007). Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain and cognition, 66(3), 260-264.
  • Battista, M., Wheatley, G. ve Talsma, G. (1989). Spatial visualization, formal reasoning, and geometric problem-solving strategies of preservice elementary teachers. Focus on Learning Problems in Mathematics, 11(4), 17-30.
  • Baykul, Y. (2005). İlköğretimde Matematik Öğretimi (1-5. Sınıflarda). Ankara: Pegem Yayıncılık.
  • Bishop AJ (1980) Spatial abilities and mathematics education: A review. Educational Studies in Mathematics, 11(1980), 257-269. Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-17.
  • Bridgeman, B. (1992). A comparison of quantitative questions in open‐ended and multiple‐choice formats. Journal of Educational Measurement, 29(3), 253-271.
  • Bulut S. ve Köroğlu S., 2000, On Birinci Sınıf Öğrencilerinin ve Matematik Öğretmen Adaylarının Uzaysal Yeteneklerinin İncelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 18, 56-61.
  • Burnett, S. A., ve Lane, D. M. (1980). Effects of academic instruction on spatial visualization. Intelligence, 4(3), 233-242.
  • Carpenter, P. A., ve Just, M. A. (1986). Spatial ability: An information processing approach to psychometrics. Advances in the psychology of human intelligence, 3, 221-253.
  • Carroll, J. B. (1993). Human cognitive abilities:A survey of factor-analytic studies. New York: Cambridge University Press.
  • Casey, M. B., Nuttall, R. L., ve Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 28-57.
  • Chang, Y. (2014). 3D-CAD effects on creative design performance of different spatial abilities students. Journal of ComputerAssisted Learning, 30, 397-407
  • Clements, D. H. ve Battista, M.T. (1992). Geometry and Spatial Reasoning. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning, 420-464. New York:Macmillan Publishing Company.
  • Clements, D.H. ve McMillen, S. (1996). Rethinking “Concrete” Manipulatives. Teaching Children Mathematics, 2(5), 270-279.
  • Clements, D.H., ve Sarama, J. (2007). Early childhood mathematics learning. In F. Lester (Ed.), Handbook of Research on Teaching and Learning Mathematics (2nd ed.). Greenwich, CT: Information Age Publishing
  • Dane, A. ve Başkurt, H. (2011). İlköğretim 6,7 ve 8. Sınıf Öğrencilerinin Doğru Parçası, Doğrusallık, Işın ve Açı Kavramlarını Algılama Düzeyleri. Erzincan Eğitim Fakültesi Dergisi,13(2). 23-35.
  • Del Grande, J. (1990). Spatial sense. The Arithmetic Teacher, 37(6), 14.
  • Dere, E. (2017). Web Tabanlı 3B Tasarım Uygulamalarının Ortaokul Öğrencilerinin Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkisi. Yüksek Lisans Tezi, Başkent Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the learning of mathematics,(17). 11-18.
  • Downs, R., ve DeSouza, A. (2006). Learning to think spatially: GIS as a support system in the K–12 curriculum. National Academies Press.
  • Durmuş, S. (2012). Geometrik Düşünme ve Geometrik Kavramlar. J. A. Walle, K. S. Karp, & J. M. Bay-Williams içinde, İlkokul ve Ortaokul Matematiği Gelişimsel Yaklaşımla Öğretim (s. 400). Ankara: Nobel.
  • Ergün, S. (2010). İlköğretim 7. Sınıf Öğrencilerinin Çokgenleri Algılama, Tanımlama ve Sınıflama Biçimleri, Yayınlanmamış Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Fennema, E., ve Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 184-206.
  • Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. Proceedings of the 18th International Conference for the Psychology of Mathematics Education (Vol.1, p. 328), USA.
  • Gün, E. (2014). Artırılmış Gerçeklik Uygulamalarının Öğrencilerin Uzamsal Yeteneklerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-157.
  • Heigham, J. ve Croker, R.A. (2009). Qualitative Research in Applied Linguistics A Practical İntroduction. Palgrave Macmillan, New York.
  • İça Turhan, E. (2010). Bilgisayar Destekli Perspektif Çizimlerin Sekizinci Sınıf Öğrencilerinin Uzamsal Yeteneklerine, Matematik, Teknoloji ve Geometriye Karşı Tutumlarına Etkisi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Jackson, C., Lamar, M., Wilhelm, J. A., ve Cole, M. (2015). Gender and Racial Differences: Development of Sixth Grade Students’ Geometric Spatial Visualization within an Earth/Space Unit. School Science and Mathematics 115(7), 330-343.
  • Jones, K. (2002). Issues in the Teaching and Learning of Geometry. In: Linda Haggarty (Ed), Aspects of Teaching Secondary Mathematics: perspectives on practice. London: RoutledgeFalmer. Chapter 8, pp 121-139. ISBN: 0-415-26641-6).
  • Kalay, H. (2015). 7. Sınıf Öğrencilerinin Uzamsal Yönelim Becerilerini Geliştirmeye Yönelik Tasarlanan Öğrenme Ortamının Değerlendirilmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Eğitim Bilimleri Enstitüsü. Trabzon.
  • Kimura, D. (1999). Sex and cognition. Cambridge, MA: MIT Press
  • Kösa, T. (2016). Uzamsal Yetenek: Tanımı ve Bileşenleri. E. Bingölbali, S. Arslan, & İ. Ö. Zembat içinde, Matematik Eğitiminde Teoriler (s. 337-338). Ankara: Pegem Akademi.
  • Linn, M. C., ve Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
  • Lohman, D. F. (1993). Spatial ability. Human abilities: Their nature and measurement, 97, 116.
  • Malara, N. (1998). On the difficulties of visualization and representation of 3D objects in middle school teachers. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME International Conference, 3, 239-246.
  • Martin-Guiterrez, J., Gil, F. A., Contero, M., ve Saorin, J. l. (2010). Dynamic Three-Dimensional Illustrator for Teaching Descriptive Geometry and Training Visualisation Skills.
  • McGee, M.G. (1979). Human spatial abilities: psychometric studies and environmental , genetic, hormonal and influences. Psychological Bulletin, 86(5), 889-918.
  • MEB (2015a). Ortaokul matematik dersi 5-8. Sınıflar öğretim programı. Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı.
  • MEB (2015b). Ortaöğretim matematik dersi 9-12. Sınıflar öğretim programı. Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı.
  • Monaghan, F. (2000). What difference does it make? Children’s views of the differences between some guadrilaterals. Educational studies in mathematics, 42(2), 179-196.
  • Morse, J. M. (2003). Principles of mixed methods and multimethod research design. Handbook of mixed methods in social and behavioral research, 1, 189-208.
  • NCTM (National Council of Teachers of Mathematics) (2000). Principles and standards for school mathematics, Reston, VA: Author Okagaki, L., ve Frensch, P. A. (1996). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Interacting with video, 11, 115-140.
  • Olkun, S. (2003). Making Connections: Improving Spatial Abilities with Engineering Drawing Activities. International Journal of Mathematics Teaching and Learning, 4(2), 86-91.
  • Ozuru, Y., Briner, S., Kurby, C. A., & McNamara, D. S. (2013). Comparing comprehension measured by multiple-choice and open-ended questions. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 67(3), 215.
  • Özkan, M. (2015). 7. sınıf öğrencilerinin çokgenlerde ve özel dörtgenlerde yaptıkları kavram yanılgılarının incelenmesi. Yayınlanmamış Yüksek Lisans Tezi. Çukurova Üniversitesi, Sosyal Bilimler Enstitüsü, Adana.
  • Parzysz, B. (1988). Problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19(1), 79–92.
  • Parzysz, B. (1991). Representations of space and students’ conceptions at high school level. Educational Studies in Mathematics, 22(6), 575–593.
  • Sowder, J. T., ve Wearne, D. (2006). What do we know about eighth-grade student achievement? Mathematics Teaching in the Middle School.
  • Stockdale, C., ve Possin, C. (1998). Spatial Relations and Learning. ARK Foundation, Allenmore Medical Center.
  • Strong, S., ve Smith, R. (2002). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of industrial technology, 18(1), 1-6.
  • Tan, Ş. (2009). Öğretimde ölçme ve değerlendirme: KPSS el kitabı. Pegem Akademi
  • Tartre, L.A. (1990). Spatial Orientation Skill and Mathematical Problem Solving. Journal for Research in Mathematics Education, 21, 216-229.
  • Titus, S., & Horsman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57(4), 242-254.
  • Thurstone, L. L.(1938) Primary Mental Abilities, Psychometric Monographs, 1–121.
  • Turğut, M. ve Nagy-Kondor, R. (2013). Spatial visualization skills of Hungarian and Turkish prospective mathematics teachers. International Journal for Studies in Mathematics Education, 6(1), 168-183.
  • Turğut, M. (2007). İlköğretim II. Kademede Öğrencilerin Uzamsal Yeteneklerinin İncelenmesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü. İzmir.
  • Turgut, M. F. ve Baykul, Y. (2012). Eğitimde ölçme ve değerlendirme. Ankara: Pegem Akademi
  • Tversky, B. (2005). Visuospatial reasoning. The Cambridge handbook of thinking and reasoning, (13), 209-240.
  • Ubuz, B. ve Üstün, I. (2003). Figural and conceptual aspects in identifying polygons. Proceedings of the 27th International Conference for the Psychology of Mathematics Education (Vol.1, p. 328), USA.
  • Usiskin, Z. (1987). Why elementary algebra can, should, and must be an eighth-grade course for average students. The Mathematics Teacher, 80(6), 428-438.
  • Wai, J., Lubinski, D., ve Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. 6. Baskı. Ankara: Seçkin Yayıncılık.
  • Yıldız, B. (2009). Üç-Boyutlu Sanal Ortam ve Somut Materyal Kullanımının Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkisi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara.
  • Yolcu, B. (2008). Altıncı Sınıf Öğrencilerinin Uzamsal Yeteneklerini Somut Modeller ve Bilgisayar Uygulamaları ile Geliştirme Çalışmaları. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Yurt, E. (2011). Sanal Ortam ve Somut Nesneler Kullanılarak Gerçekleştirilen Modellemeye Dayalı Etkinliklerin Uzamsal Düşünme ve Zihinsel Çevirme Becerilerine Etkisi. Yüksek Lisans Tezi, Selçuk Üniversitesi Eğitim Bilimleri Enstitüsü. Konya.
  • Yüksel, N. S. (2013). Uzamsal Yetenek, Bileşenleri ve Uzamsal Yeteneğin Geliştirilmesi Üzerine. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara.
  • Zimmerman, W. (1991). Editors' introduction: What is mathematical visualization? In W. Zimmerman ve S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 1—7). Washington, DC: Mathematical Association of America .
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makale
Yazarlar

İbrahim Kepceoğlu

Niyazi Öner Ercan Bu kişi benim

Yayımlanma Tarihi 15 Kasım 2018
Kabul Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Kepceoğlu, İ., & Ercan, N. Ö. (2018). Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?. Kastamonu Education Journal, 26(6), 2189-2201. https://doi.org/10.24106/kefdergi.2990

10037