BibTex RIS Kaynak Göster

YARIŞ PROBLEMİNDE KÜTLENİN ANLAMLANDIRILMASI

Yıl 2015, Cilt: 23 Sayı: 2, 601 - 618, 15.05.2015

Öz

Bu çalışmanın amacı, yatay düzlemde yarışan düzenekler için, yarış sonucunu tahmin etmede kütlenin, ortaokul öğrencileri tarafından nasıl anlamlandırıldığını araştırmaktır. Bu doğrultuda öğrencilerin kütle kavramı hakkında günlük hayattaki gözlemlerinden yapılandırdıkları şemaların, sınıf düzeyi, cinsiyet gibi değişkenler bakımından farklılık gösterip göstermedikleri analiz edilmiştir. Bu amaçla araştırmacılar tarafından geliştirilen ve beş açık uçlu sorudan oluşan Yarış Soru Seti, 738 ortaokul öğrencisine uygulanmıştır. Tarama araştırma deseninin benimsendiği bu araştırmada, öğrenci cevapları betimsel olarak analiz edilmiştir. Elde edilen bulgular, öğrencilerin kütlesi en az olan aracın yarışı kazanacağını belirttiklerini; fakat kütle miktarının yarış sıralaması tahmininde tek ölçüt olarak kullanılmadıklarını göstermiştir.

Kaynakça

  • Aristote. (1862). Physique d’Aristote, ou Leçons sur les principes généraux de la nature / traduite en français pour la première fois et accompagnée d’une paraphrase et de notes... par J. Barthélemy- Saint-Hilaire,A. Durand, Ladrange (Paris).
  • Bachelard, G. (1938). La formation de l’esprit scientifique: contribution à une psychanalyse de la connaissance. Vrin
  • Baykal, B. (2014). Fen ve Teknoloji dersi öğretmenlerinin sınıf içi iletişim ve etkileşimlerinin analizi: Diyalojik ve otoriter tartışmalar. Yayınlanmamış Yüksek Lisans tezi, Niğde Üniversitesi, Niğde.
  • Bliss, J. (2008). Commonsense reasoning about the physical world. Studies in Science Education, 44(2), 123–155. doi:10.1080/03057260802264149
  • Bovet, M., ve Halbwachs, F. (1980). Le poids et la masse en classe de sixième. Revue Française de Pédagogie, 53(1), 4–18.
  • Brown, D., ve Clement, J. (1992). Classroom teaching experiments in mechanics. Research in Physics Learning: Theoretical Issues and Empirical Studies, 380–397.
  • Buckingham, D., ve Shultz, T. R. (2000). The developmental course of distance, time, and velocity con- cepts: A generative connectionist model. Journal of Cognition and Development, 1(3), 305–345.
  • Büyüköztürk Ş, Kılıç Çakmak E, Akgün Ö E, Karadeniz Ş, Demirel F (2009). Bilimsel Araştırma Yöntemleri. Pegem Akademi. Ankara.
  • Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19.
  • Chi, M. T. H. (2005). “Commonsense Conceptions of Emergent Processes: Why Some
  • Misconceptions are Robust”. The Journal of the Learning Sciences. 14(2): 161-199.
  • Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50(1), 66–71.
  • Clement, J. (1994). Imagistic simulation and physical intuition in expert problem solving. In Proce- edings of the 16th annual conference of the Cognitive Science Society (pp. 201–206).
  • diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2/3), 105–225. doi:10.2307/3233725
  • diSessa, A.A., Gillespie, N., & Esterly, J. (2004). Coherence versus Fragmentation in the Develop- ment of the Concept of Force. Cognitive Science. 28: 843-900.
  • Galili, I. (1993). Weight and gravity: teachers’ ambiguity and students’ confusion about the con- cepts. International Journal of Science Education, 15(2), 149–162.
  • Galili, I. (1995). Interpretation of students’ understanding of the concept of weightlessness. Rese- arch in Science Education, 25(1), 51–74.
  • Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. Inter- national Journal of Science Education, 23(10), 1073–1093. doi:10.1080/09500690110038585
  • Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. Inter- national Journal of Science Education, 23(10), 1073–1093. doi:10.1080/09500690110038585
  • Givry, D. (2003). Le concept de masse en physique: quelques pistes à propos des conceptions et des obstacles. Didaskalia, 22, 41–67.
  • Gönen, S. (2008). A study on student teachers’ misconceptions and scientifically acceptable con- ceptions about mass and gravity. Journal of Science Education and Technology, 17(1), 70–81.
  • Halbwachs, F. (1979). Le poids et la masse : À propos des nouveaux programmes de sixième. Bul- letin de l’Union Des Physiciens, 73(613), 869–873.
  • Hallouna, I. A., ve Hestenes, D. (1985a). Common sense concepts about motion. Am. J. Phys, 53(11), 1056–1065.
  • Halloun, I. A., ve Hestenes, D. (1985b). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055.
  • Hast, M., ve Howe, C. (2012). Understanding the beliefs informing children’s commonsense theo- ries of motion: the role of everyday object variables in dynamic event predictions. Research in Science ve Technological Education, 30(1), 3–15.
  • Hast, M., ve Howe, C. (2013). The Development of Children’s Understanding of Speed Change: A Contributing Factor Towards Commonsense Theories of Motion. Journal of Science Education and Technology, 22(3), 337–350. doi:10.1007/s10956-012-9397-5
  • Hast, M., ve Howe, C. (2013). Towards a Complete Commonsense Theory of Motion: The interac- tion of dimensions in children’s predictions of natural object motion. International Journal of Science Education, 35(10), 1649–1662.
  • Heurtaux, J. (1978). A propos de“ masse inerte” et“ masse de gravité.” Revue Française de Pédagogie, 45(1), 37–43.
  • Hewitt, P. G. (2009). Conceptual physics. Pearson Addison Wesley.
  • Howe, C. (2002). Conceptual Structure in Childhood and Adolescence: The Case of Everyday Physics. Routledge.
  • Ioannides, C., Vosniadou, S. (2002). The Changing Meaning of Force. Cognitive Science Quarterly. (2): 5-61.
  • Karasar N (2011). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayın Dağıtım.
  • McCloskey, M., Washburn, A., ve Felch, L. (1983). Intuitive physics: The straight-down belief and its origin. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 636.
  • McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37, 24.
  • Mullet, E., ve Gervais, H. (1990). Distinction between the concepts of weight and mass in high school students. International Journal of Science Education, 12(2), 217–226. doi:10.1080/0950069900120210
  • Ogborn, J. (1993). Approches théorique et empirique de la causalité. Didaskalia, (1), 29–47.
  • Piaget, J. (1957). Les notions de vitesse, d’espace parcouru et de temps chez l’enfant de cinq ans. Enfance, 10(1), 9–42. doi:10.3406/enfan.1957.1340
  • Serway, R. A., ve Jewett, J. W. (2009). Physics for Scientists and Engineers, Volume 1, Chapters 1-22 (8th ed.). Brooks Cole.
  • Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541.
  • Tiberghien, A. (2004). Causalité dans l’apprentissage des sciences. Intellectica, 38(1), 69–102
  • Temiz, B. K., & Yavuz, A. (2014). Students’ misconceptions about Newton’s second law in outer space. European Journal of Physics, 35(4), 045004. doi:10.1088/0143-0807/35/4/045004

MAKING MEANING OF MASS VARIABLE IN RACE PROBLEMS

Yıl 2015, Cilt: 23 Sayı: 2, 601 - 618, 15.05.2015

Öz

This study aims to investigate how middle school students make meaning the relationship between mass of vehicles and their speed on a horizontal plane. Accordingly, students’’ schemes constructed from daily life observations for concepts such as the concept of mass and differences between schemes and variables including level of class and gender were investigated. Race Question Set developed by authors was administrated to 738 middle school students. A descriptive study (relational-screening model) was adopted for analyzing students’ answers. Findings obtained indicated that mass of vehicles was important but that was not a single criterion for predicting race result among students.

Kaynakça

  • Aristote. (1862). Physique d’Aristote, ou Leçons sur les principes généraux de la nature / traduite en français pour la première fois et accompagnée d’une paraphrase et de notes... par J. Barthélemy- Saint-Hilaire,A. Durand, Ladrange (Paris).
  • Bachelard, G. (1938). La formation de l’esprit scientifique: contribution à une psychanalyse de la connaissance. Vrin
  • Baykal, B. (2014). Fen ve Teknoloji dersi öğretmenlerinin sınıf içi iletişim ve etkileşimlerinin analizi: Diyalojik ve otoriter tartışmalar. Yayınlanmamış Yüksek Lisans tezi, Niğde Üniversitesi, Niğde.
  • Bliss, J. (2008). Commonsense reasoning about the physical world. Studies in Science Education, 44(2), 123–155. doi:10.1080/03057260802264149
  • Bovet, M., ve Halbwachs, F. (1980). Le poids et la masse en classe de sixième. Revue Française de Pédagogie, 53(1), 4–18.
  • Brown, D., ve Clement, J. (1992). Classroom teaching experiments in mechanics. Research in Physics Learning: Theoretical Issues and Empirical Studies, 380–397.
  • Buckingham, D., ve Shultz, T. R. (2000). The developmental course of distance, time, and velocity con- cepts: A generative connectionist model. Journal of Cognition and Development, 1(3), 305–345.
  • Büyüköztürk Ş, Kılıç Çakmak E, Akgün Ö E, Karadeniz Ş, Demirel F (2009). Bilimsel Araştırma Yöntemleri. Pegem Akademi. Ankara.
  • Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19.
  • Chi, M. T. H. (2005). “Commonsense Conceptions of Emergent Processes: Why Some
  • Misconceptions are Robust”. The Journal of the Learning Sciences. 14(2): 161-199.
  • Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50(1), 66–71.
  • Clement, J. (1994). Imagistic simulation and physical intuition in expert problem solving. In Proce- edings of the 16th annual conference of the Cognitive Science Society (pp. 201–206).
  • diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2/3), 105–225. doi:10.2307/3233725
  • diSessa, A.A., Gillespie, N., & Esterly, J. (2004). Coherence versus Fragmentation in the Develop- ment of the Concept of Force. Cognitive Science. 28: 843-900.
  • Galili, I. (1993). Weight and gravity: teachers’ ambiguity and students’ confusion about the con- cepts. International Journal of Science Education, 15(2), 149–162.
  • Galili, I. (1995). Interpretation of students’ understanding of the concept of weightlessness. Rese- arch in Science Education, 25(1), 51–74.
  • Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. Inter- national Journal of Science Education, 23(10), 1073–1093. doi:10.1080/09500690110038585
  • Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. Inter- national Journal of Science Education, 23(10), 1073–1093. doi:10.1080/09500690110038585
  • Givry, D. (2003). Le concept de masse en physique: quelques pistes à propos des conceptions et des obstacles. Didaskalia, 22, 41–67.
  • Gönen, S. (2008). A study on student teachers’ misconceptions and scientifically acceptable con- ceptions about mass and gravity. Journal of Science Education and Technology, 17(1), 70–81.
  • Halbwachs, F. (1979). Le poids et la masse : À propos des nouveaux programmes de sixième. Bul- letin de l’Union Des Physiciens, 73(613), 869–873.
  • Hallouna, I. A., ve Hestenes, D. (1985a). Common sense concepts about motion. Am. J. Phys, 53(11), 1056–1065.
  • Halloun, I. A., ve Hestenes, D. (1985b). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055.
  • Hast, M., ve Howe, C. (2012). Understanding the beliefs informing children’s commonsense theo- ries of motion: the role of everyday object variables in dynamic event predictions. Research in Science ve Technological Education, 30(1), 3–15.
  • Hast, M., ve Howe, C. (2013). The Development of Children’s Understanding of Speed Change: A Contributing Factor Towards Commonsense Theories of Motion. Journal of Science Education and Technology, 22(3), 337–350. doi:10.1007/s10956-012-9397-5
  • Hast, M., ve Howe, C. (2013). Towards a Complete Commonsense Theory of Motion: The interac- tion of dimensions in children’s predictions of natural object motion. International Journal of Science Education, 35(10), 1649–1662.
  • Heurtaux, J. (1978). A propos de“ masse inerte” et“ masse de gravité.” Revue Française de Pédagogie, 45(1), 37–43.
  • Hewitt, P. G. (2009). Conceptual physics. Pearson Addison Wesley.
  • Howe, C. (2002). Conceptual Structure in Childhood and Adolescence: The Case of Everyday Physics. Routledge.
  • Ioannides, C., Vosniadou, S. (2002). The Changing Meaning of Force. Cognitive Science Quarterly. (2): 5-61.
  • Karasar N (2011). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayın Dağıtım.
  • McCloskey, M., Washburn, A., ve Felch, L. (1983). Intuitive physics: The straight-down belief and its origin. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 636.
  • McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37, 24.
  • Mullet, E., ve Gervais, H. (1990). Distinction between the concepts of weight and mass in high school students. International Journal of Science Education, 12(2), 217–226. doi:10.1080/0950069900120210
  • Ogborn, J. (1993). Approches théorique et empirique de la causalité. Didaskalia, (1), 29–47.
  • Piaget, J. (1957). Les notions de vitesse, d’espace parcouru et de temps chez l’enfant de cinq ans. Enfance, 10(1), 9–42. doi:10.3406/enfan.1957.1340
  • Serway, R. A., ve Jewett, J. W. (2009). Physics for Scientists and Engineers, Volume 1, Chapters 1-22 (8th ed.). Brooks Cole.
  • Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541.
  • Tiberghien, A. (2004). Causalité dans l’apprentissage des sciences. Intellectica, 38(1), 69–102
  • Temiz, B. K., & Yavuz, A. (2014). Students’ misconceptions about Newton’s second law in outer space. European Journal of Physics, 35(4), 045004. doi:10.1088/0143-0807/35/4/045004
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA43DD36BF
Bölüm Derleme Makale
Yazarlar

Ahmet Yavuz Bu kişi benim

Burcu Baykal Bu kişi benim

Burak Kağan Temiz Bu kişi benim

Yayımlanma Tarihi 15 Mayıs 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 23 Sayı: 2

Kaynak Göster

APA Yavuz, A., Baykal, B., & Temiz, B. K. (2015). MAKING MEANING OF MASS VARIABLE IN RACE PROBLEMS. Kastamonu Education Journal, 23(2), 601-618.