Some Basic Properties of Grand Lorentz spaces
Yıl 2023,
, 1351 - 1360, 15.12.2023
İlker Eryılmaz
,
Gökhan Işık
Öz
The concept of Lebesgue space has been generalized to the large Lebesgue space with non-weight and weight, and the classical Lorentz space concept has been generalized to large Lorentz spaces with a similar logic. In this manuscript, it is demonstrated that there is a Banach function space that is invariant under rearrangements using the maximal function instead of normalizing the large Lorentz spaces with the rearrangement function for . In addition, coverage and inclusion properties in large Lorentz spaces are investigated.
Kaynakça
- Blozinski, A.P., (1972a). On a convolution theorem for spaces, Trans. Am. Math. Soc., 164, 225-265.
- Blozinski, A.P., (1972b). Convolution of functions, Proc. Am. Math. Soc., 32(1), 237-240.
- Castillo, R.E., Rafeiro, H., (2016). An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. xii+461 pp.
- Chen, Y.K., Lai, H.C., (1975). Multipliers of Lorentz spaces, Hokkaido Math. J., 4, 267-270.
- Fiorenza, A., (2000). Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51(2), 131–148.
- Fiorenza,A, Gupta, B., and Jain,P., (2008). The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188(2), 123–133.
- Fiorenza,A., Karadzhov,G.E., (2004). Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwendungen, 23(4), 657–681.
- Hewitt, E., Ross, K.A., (1963). Abstract Harmonic Analysis,Vol.1, Springer Verlag, Berlin, 650 pp.
- Iwaniec, T., Sbordone,C., (1992). On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119(2), 129–143.
- Kokilashvili,V., (2009). Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem, Proc. A. Razmadze Math. Inst. 151, 129–133.
- Kokilashvili,V., (2010). Boundedness criteria for singular integrals in weighted grand Lebesgue spaces, Problems in Mathematical Analysis 49, J. Math. Sci. (N.Y.), 170(1), 20–33.
- Kokilashvili,V., Meskhi,A., (2009). A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Math. J., 16(3), 547–551.
- Meskhi, A., (2011). Weighted criteria for the Hardy transform under the Bp condition in grand Lebesgue spaces and some applications, J. Math. Sci., Springer, 178 (6), 622–636.
- Meskhi, A., (2015). Criteria for the boundedness of potential operators in grand Lebesgue spaces, Proc. A. Razmadze Math. Inst. 169, 119–132.
- Oğur, O. (2020). Grand Lorentz sequence space and its multiplication operatör, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (1), 771-781.
- Pankaj,J., Kumari,S., (2012). On grand Lorentz spaces and the maximal operator. Georgian Math. J., 19(2), 235–246.
- Rieffel, M., (1967). Induced Banach representations of Banach Algebras and locally compact groups, J. Funct. Anal., 1, 443-491.
- Samko,S.G., Umarkhadzhiev,S.M., (2011a). On Iwaniec-Sbordone spaces on sets which may have infinite measure, Azerb. J. Math., 1(1), 67–84.
- Samko,S.G., Umarkhadzhiev,S.M., (2011b), On Iwaniec-Sbordone spaces on sets which may have infinite measure: addendum, Azerb. J. Math., 1(2), 143–144.
Büyük (Grand) Lorentz Uzaylarının Bazı Temel Özellikleri
Yıl 2023,
, 1351 - 1360, 15.12.2023
İlker Eryılmaz
,
Gökhan Işık
Öz
Lebesgue uzayı kavramı büyük Lebesgue uzayı kavramına ağırlıklı ve ağırlıksız olarak genelleştirilmiş olup klasik Lorentz uzayı kavramıda benzer mantıkla büyük Lorentz uzaylarına genelleştirilmiştir. Bu çalışmada büyük Lorentz uzaylarını yeniden düzenleme fonksiyonu ile normlandırmak yerine maksimal fonksiyon kullanarak için yeniden düzenlemeler altında değişmez olan bir Banach fonksiyon uzayı olduğu gösterilmiştir. Ayrıca büyük Lorentz uzaylarındaki kapsama özellikleri incelenmiştir.
Kaynakça
- Blozinski, A.P., (1972a). On a convolution theorem for spaces, Trans. Am. Math. Soc., 164, 225-265.
- Blozinski, A.P., (1972b). Convolution of functions, Proc. Am. Math. Soc., 32(1), 237-240.
- Castillo, R.E., Rafeiro, H., (2016). An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. xii+461 pp.
- Chen, Y.K., Lai, H.C., (1975). Multipliers of Lorentz spaces, Hokkaido Math. J., 4, 267-270.
- Fiorenza, A., (2000). Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51(2), 131–148.
- Fiorenza,A, Gupta, B., and Jain,P., (2008). The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188(2), 123–133.
- Fiorenza,A., Karadzhov,G.E., (2004). Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwendungen, 23(4), 657–681.
- Hewitt, E., Ross, K.A., (1963). Abstract Harmonic Analysis,Vol.1, Springer Verlag, Berlin, 650 pp.
- Iwaniec, T., Sbordone,C., (1992). On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119(2), 129–143.
- Kokilashvili,V., (2009). Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem, Proc. A. Razmadze Math. Inst. 151, 129–133.
- Kokilashvili,V., (2010). Boundedness criteria for singular integrals in weighted grand Lebesgue spaces, Problems in Mathematical Analysis 49, J. Math. Sci. (N.Y.), 170(1), 20–33.
- Kokilashvili,V., Meskhi,A., (2009). A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Math. J., 16(3), 547–551.
- Meskhi, A., (2011). Weighted criteria for the Hardy transform under the Bp condition in grand Lebesgue spaces and some applications, J. Math. Sci., Springer, 178 (6), 622–636.
- Meskhi, A., (2015). Criteria for the boundedness of potential operators in grand Lebesgue spaces, Proc. A. Razmadze Math. Inst. 169, 119–132.
- Oğur, O. (2020). Grand Lorentz sequence space and its multiplication operatör, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (1), 771-781.
- Pankaj,J., Kumari,S., (2012). On grand Lorentz spaces and the maximal operator. Georgian Math. J., 19(2), 235–246.
- Rieffel, M., (1967). Induced Banach representations of Banach Algebras and locally compact groups, J. Funct. Anal., 1, 443-491.
- Samko,S.G., Umarkhadzhiev,S.M., (2011a). On Iwaniec-Sbordone spaces on sets which may have infinite measure, Azerb. J. Math., 1(1), 67–84.
- Samko,S.G., Umarkhadzhiev,S.M., (2011b), On Iwaniec-Sbordone spaces on sets which may have infinite measure: addendum, Azerb. J. Math., 1(2), 143–144.