A Machine Learning Based Hybrid Clustering and Prediction Approach to Energy Efficiency in Buildings
Yıl 2025,
Cilt: 15 Sayı: 4, 1399 - 1425, 15.12.2025
Aslıhan Sağıroğlu
,
Alev Taşkın
Öz
Efficiency in energy usage has become increasingly important in today's World due to the rising costs and the need to prevent environmental pollution. As buildings are responsible for a major portion of energy consumption, energy efficiency in buildings has gained significant attention, which has led to the creation of energy classifications, including the concepts as green buildings. These classifications are based on two types of energy consumptions: heating load and cooling load, which are more significant than lighting and ventilation. This study utilized machine learning methods to predict energy usage in buildings by analyzing heating and cooling loads. Prior cluster analysis was performed to enhance the prediction performance. The study employed SPSS and Python programs for the analysis.
Kaynakça
-
Abbasimehr, H., Paki, R., & Bahrini, A. (2023). A novel XGBoost-based featurization approach to forecast renewable energy consumption with deep learning models. Sustainable Computing: Informatics and Systems, 38, 100863. https://doi.org/10.1016/j.suscom.2023.100863
-
Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J., Azeem Akram, H. M., Hassnain Mohsan, S. A., & Kazim, M. (2018). Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment. Energy, 158, 17-32. https://doi.org/10.1016/j.energy.2018.05.169
-
Albayrak, Y. doç dr ali S., & Yilmaz, Ö. gör şebnem K. (2009). VERİ MADENCİLİĞİ: KARAR AĞACI ALGORİTMALARI VE İMKB VERİLERİ ÜZERİNE BİR UYGULAMA. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), Article 1.
-
AlMahamid, F., & Grolinger, K. (2022). Agglomerative Hierarchical Clustering with Dynamic Time Warping for Household Load Curve Clustering. 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 241-247. https://doi.org/10.1109/CCECE49351.2022.9918481
-
Al-Rakhami, M., Gumaei, A., Alsanad, A., Alamri, A., & Hassan, M. M. (2019). An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings. IEEE Access, 7, 48328-48338. https://doi.org/10.1109/ACCESS.2019.2909470
-
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. (2024).
-
Aqlan, F., Ahmed, A., Srihari, K., & Khasawneh, M. (2014). Integrating Artificial Neural Networks and Cluster Analysis to Assess Energy Efficiency of Buildings. İçinde IIE Annual Conference and Expo 2014.
-
Aurangzeb, K. (2024). DBSCAN-based energy users clustering for performance enhancement of deep learning model. Journal of Intelligent & Fuzzy Systems, 46(3), 5555-5573. https://doi.org/10.3233/JIFS-235873
-
Bakkelund, D. (2022). Order preserving hierarchical agglomerative clustering. Machine Learning, 111(5), 1851-1901. https://doi.org/10.1007/s10994-021-06125-0
-
Bektas Ekici, B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications, 38(5), 5352-5358. https://doi.org/10.1016/j.eswa.2010.10.021
-
BİNALARDA ENERJİ PERFORMANSI YÖNETMELİĞİ. (t.y.).
-
Birkes, D., & Dodge, D. Y. (2011). Alternative Methods of Regression. John Wiley & Sons.
-
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
-
Canbay, P., & Taş, H. (2022). Yapıların Isıtma ve Soğutma Yükünün Yapay Zeka ile Tahmini. International Journal of Pure and Applied Sciences, 8(2), 478-489. https://doi.org/10.29132/ijpas.1166227
-
cevreselgostergeler.csb.gov.tr. (t.y.). - Çevresel Göstergeler. Geliş tarihi 18 Mart 2024, gönderen https://cevreselgostergeler.csb.gov.tr/sektorlere-gore-nihai-enerji-tuketimi-i-85804
-
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785
-
Cheng, L. K., Selamat, A., Zabil, M. H. M., Selamat, M. H., Alias, R. A., Puteh, F., Mohamed, F., & Krejcar, O. (2019). Comparing the Accuracy of Hierarchical Agglomerative and K-means Clustering on Mobile Augmented Reality Usability Metrics. 2019 IEEE Conference on Big Data and Analytics (ICBDA), 34-40. https://doi.org/10.1109/ICBDA47563.2019.8987044
-
Cheng, M.-Y., & Cao, M.-T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188. https://doi.org/10.1016/j.asoc.2014.05.015
-
Chou, J.-S., & Bui, D.-K. (2014). Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy and Buildings, 82, 437-446. https://doi.org/10.1016/j.enbuild.2014.07.036
-
Cook, R. D. (2015). Linear Hypothesis: Regression (Graphics). İçinde J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition) (Second Edition, ss. 157-161). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.42141-0
-
Coşkun, E., Gündoğan, E., Kaya, M., & Alhajj, R. (2021). Veri madenciliği yöntemleri kullanarak yoğun bakım ünitesindeki hastaların sınıflandırması. Computer Science. https://doi.org/10.53070/bbd.990718
-
Di̇Lber, B., & Özdemi̇R, A. F. (2022). Estimating Heating and Cooling Loads of Energy Efficient Buildings with Tidy Models. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 1091-1106. https://doi.org/10.29130/dubited.939933
-
Doğan, M., & Seçme, D. (2018). Çevre Dostu Binalar ve Yeşil Bina Sertifika Sistemleri.
-
Dong, G., Jin, Y., Wang, S., Li, W., Tao, Z., & Guo, S. (2019). DB-Kmeans:An Intrusion Detection Algorithm Based on DBSCAN and K-means. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), 1-4. https://doi.org/10.23919/APNOMS.2019.8892910
-
Duarte, G. R., Capriles, P., & Lemonge, A. (t.y.). Prediction of energy load of buildings using machine learning methods.
-
Economopoulou, E.-E., Vonitsanos, G., Mylonas, P., & Kanavos, A. (2024). Efficient Energy Disaggregation Using DBSCAN: A Novel Approach for Enhanced Energy Management. Içinde I. Maglogiannis, L. Iliadis, I. Karydis, A. Papaleonidas, & I. Chochliouros (Ed.), Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops (ss. 236-249). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63227-3_16
-
Enerji Verimliliği—T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (t.y.). Geliş tarihi 18 Mart 2024, gönderen https://enerji.gov.tr/enerji-verimliligi
-
Ercan, U. (2022). Havayolu Taşımacılığında Müşteri Memnuniyetinin Makine Öğrenmesi Yöntemleri İle Belirlenmesi. Alanya Akademik Bakış. https://doi.org/10.29023/alanyaakademik.1095574
-
Erdede, S. B., Erdede, B., & Bektaş, S. (2014). SÜRDÜRÜLEBİLİR YEŞİL BİNALAR VE SERTİFİKA SİSTEMLERİNİN DEĞERLENDİRİLMESİ.
-
Fernández, A., & Gómez, S. (2008). Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms. Journal of Classification, 25(1), 43-65. https://doi.org/10.1007/s00357-008-9004-x
-
Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification [J]. Journal of Machine Learning Research - JMLR, 3.
-
Garikapati, P., Balamurugan, K., Latchoumi, T. P., & Malkapuram, R. (2021). A Cluster-Profile Comparative Study on Machining AlSi7/63% of SiC Hybrid Composite Using Agglomerative Hierarchical Clustering and K-Means. Silicon, 13(4), 961-972. https://doi.org/10.1007/s12633-020-00447-9
-
Guo, H., Liu, X., & Zhang, Q. (2024). Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms. AQUA-WATER INFRASTRUCTURE ECOSYSTEMS AND SOCIETY, 73(5), 870-887. https://doi.org/10.2166/aqua.2024.294
-
Gümüşçü, A., Tenekeci, M. E., Beşli, N., İlkhan, M. A., Aslan, E., & Abamor, S. (2018). Yapılarda Isıtma ve Soğutma Yükü Sınıfların Makine Öğrenme Yöntemleri ile Belirlenmesi. Harran Üniversitesi Mühendislik Dergisi, 3(2), Article 2.
-
Güzelkokar, O. (2019). Mevcut Yapıların Sürdürülebilir Yeşil Binalara Dönüştürülmesi.
-
Jahan, I., & Sanam, T. F. (2024). A comprehensive framework for customer retention in E-commerce using machine learning based on churn prediction, customer segmentation, and recommendation. Electronic Commerce Research. https://doi.org/10.1007/s10660-024-09936-0
-
Kavaklioglu, K. (2018). Robust modeling of heating and cooling loads using partial least squares towards efficient residential building design. Journal of Building Engineering, 18, 467-475. https://doi.org/10.1016/j.jobe.2018.04.018
-
Khadka, S., Wagle, A., Dhakal, B., Gautam, R., Nepal, T., Shrestha, A., & Gonzalez-Longatt, F. (2024). Agglomerative Hierarchical Clustering Methodology to Restore Power System considering Reactive Power Balance and Stability Factor Analysis. International Transactions on Electrical Energy Systems, 2024(1), 8856625. https://doi.org/10.1155/2024/8856625
-
Khalil, A. J., Barhoom, A. M., Abu-Nasser, B. S., Musleh, M. M., & Abu-Naser, S. S. (2019). Energy Efficiency Prediction using Artificial Neural Network. 3(9).
-
Khan, A. M., & Osińska, M. (2023). Comparing forecasting accuracy of selected grey and time series models based on energy consumption in Brazil and India. Expert Systems with Applications, 212, 118840. https://doi.org/10.1016/j.eswa.2022.118840
-
Kumar, S., Pal, S. K., & Singh, R. P. (2018). Intra ELM variants ensemble based model to predict energy performance in residential buildings. Sustainable Energy, Grids and Networks, 16, 177-187. https://doi.org/10.1016/j.segan.2018.07.001
-
Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461. https://doi.org/10.1016/S0031-3203(02)00060-2
-
Lu, C., Li, S., Reddy Penaka, S., & Olofsson, T. (2023). Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy, 274, 127334. https://doi.org/10.1016/j.energy.2023.127334
-
Mehmet; Subaşi, M. (2005). Bilimsel Çalışmalarda P-Değerinin Rapor Edilmesi (P<0.01?, P0.05?). Tarım Bilimleri Dergisi, 11(4), 1. https://doi.org/10.1501/Tarimbil_0000000565
-
Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-Means and Alternative Clustering Methods in Modern Power Systems. IEEE Access, 11, 119596-119633. https://doi.org/10.1109/ACCESS.2023.3327640
-
Moradzadeh, A., Mansour-Saatloo, A., Mohammadi-Ivatloo, B., & Anvari-Moghaddam, A. (2020). Performance Evaluation of Two Machine Learning Techniques in Heating and Cooling Loads Forecasting of Residential Buildings. Applied Sciences, 10(11), 3829. https://doi.org/10.3390/app10113829
-
Naji, S., Keivani, A., Shamshirband, S., Alengaram, U. J., Jumaat, M. Z., Mansor, Z., & Lee, M. (2016). Estimating building energy consumption using extreme learning machine method. Energy, 97, 506-516. https://doi.org/10.1016/j.energy.2015.11.037
-
Naji, S., Shamshirband, S., Basser, H., Keivani, A., Alengaram, U. J., Jumaat, M. Z., & Petković, D. (2016). Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 53, 1520-1528. https://doi.org/10.1016/j.rser.2015.09.062
-
Namli, E., & Yücel, M. (2018). YAPAY ZEKÂ MODELLERİ İLE BETONARME YAPILARA AİT ENERJİ PERFORMANS SINIFLARININ TAHMİNİ. Uludağ University Journal of The Faculty of Engineering, 22(3), 325-346. https://doi.org/10.17482/uumfd.332320
-
Nilashi, M., Dalvi-Esfahani, M., Ibrahim, O., Bagherifard, K., Mardani, A., & Zakuan, N. (2017). A soft computing method for the prediction of energy performance of residential buildings. Measurement, 109, 268-280. https://doi.org/10.1016/j.measurement.2017.05.048
-
Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022). Machine learning for energy performance prediction at the design stage of buildings. Energy for Sustainable Development, 66, 12-25. https://doi.org/10.1016/j.esd.2021.11.002
-
Peker, M., Özkaraca, O., & Kesimal, B. (2017). Enerji Tasarruflu Bina Tasarımı İçin Isıtma ve Soğutma Yüklerini Regresyon Tabanlı Makine Öğrenmesi Algoritmaları İle Modelleme. Bilişim Teknolojileri Dergisi, 443-449. https://doi.org/10.17671/gazibtd.310154
-
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
-
Roy, S. S., Samui, P., Nagtode, I., Jain, H., Shivaramakrishnan, V., & Mohammadi-ivatloo, B. (2020). Forecasting heating and cooling loads of buildings: A comparative performance analysis. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1253-1264. https://doi.org/10.1007/s12652-019-01317-y
-
Sajjad, M., Khan, S. U., Khan, N., Haq, I. U., Ullah, A., Lee, M. Y., & Baik, S. W. (2020). Towards Efficient Building Designing: Heating and Cooling Load Prediction via Multi-Output Model. Sensors, 20(22), 6419. https://doi.org/10.3390/s20226419
-
Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications. Data Mining and Knowledge Discovery, 2(2), 169-194. https://doi.org/10.1023/A:1009745219419
-
Sekhar Roy, S., Roy, R., & Balas, V. E. (2018). Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renewable and Sustainable Energy Reviews, 82, 4256-4268. https://doi.org/10.1016/j.rser.2017.05.249
-
Seyedzadeh, S., Pour Rahimian, F., Rastogi, P., & Glesk, I. (2019). Tuning machine learning models for prediction of building energy loads. Sustainable Cities and Society, 47, 101484. https://doi.org/10.1016/j.scs.2019.101484
-
Sholahudin, Alam, A. G., Baek, C. I., & Han, H. (2016). Prediction and Analysis of Building Energy Efficiency Using Artificial Neural Network and Design of Experiments. Applied Mechanics and Materials, 819, 541-545. https://doi.org/10.4028/www.scientific.net/AMM.819.541
-
Sonmez, Y., Guvenc, U., Kahraman, H. T., & Yilmaz, C. (2015). A comperative study on novel machine learning algorithms for estimation of energy performance of residential buildings. 2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG), 1-7. https://doi.org/10.1109/SGCF.2015.7354915
-
Şükür, F. Z. (t.y.). YILDIZ TEKNİK ÜNİVERSİTESİ İKLİM DEĞİŞİKLİĞİ EYLEM PLANI.
-
Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49, 560-567. https://doi.org/10.1016/j.enbuild.2012.03.003
-
Wang, D., Lu, X., & Rinaldo, A. (t.y.). DBSCAN: Optimal Rates For Density-Based Cluster Estimation.
-
Yang, F., Gao, P., & Lu, Y. (2016). Evolving Resilient Back-Propagation Algorithm for Energy Efficiency Problem. MATEC Web of Conferences, 77, 06016. https://doi.org/10.1051/matecconf/20167706016
-
Yildiz, M. E., Beyhan, F., & Uçar, M. K. (2021). Enerji Verimli Bina Tasarımı için Yapay Sinir Ağları ile Isıtma Soğutma Yükünün Belirlenmesi. Academic Perspective Procedia, 4(1), 91-100. https://doi.org/10.33793/acperpro.04.01.17
-
Yu, H., Zhong, F., Du, Y., Xie, X., Wang, Y., Zhang, X., & Huang, S. (2023). Short-term cooling and heating loads forecasting of building district energy system based on data-driven models. Energy and Buildings, 298, 113513. https://doi.org/10.1016/j.enbuild.2023.113513
-
Yüce, T., & Kabak, M. (t.y.). Makine Öğrenmesi Algoritmaları ile Detay Üretim Alanları İçin İş Merkezi Kırılımında Üretim Süresi Tahminleme.
-
Zekić-Sušac, M., Scitovski, R., & Has, A. (2018). Cluster analysis and artificial neural networks in predicting energy efficiency of public buildings as a cost-saving approach. Croatian Review of Economic, Business and Social Statistics, 4(2), 57-66. https://doi.org/10.2478/crebss-2018-0013
-
Zhang, C., Chen, X., Wang, S., Hu, J., Wang, C., & Liu, X. (2021). Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011–2018. Psychiatry Research, 306, 114261. https://doi.org/10.1016/j.psychres.2021.114261
-
Zurini, M. (2013). Comparative Analysis of K-Means and Dbscan Algorithms. Içinde C. Boja, L. Batagan, M. Doinea, C. Ciurea, P. Pocatilu, A. Ion, R. Magos, L. Cotfas, A. Velicanu, C. Amancei, M. Andreica, & A. Zamfiroiu (Ed.), INTERNATIONAL CONFERENCE ON INFORMATICS IN ECONOMY (ss. 646-651). Bucharest Univ Economic Studies-Ase.
Binalarda Enerji Verimliliğine Makine Öğrenmesi Temelli Hibrit Bir Kümeleme ve Tahminleme Yaklaşımı
Yıl 2025,
Cilt: 15 Sayı: 4, 1399 - 1425, 15.12.2025
Aslıhan Sağıroğlu
,
Alev Taşkın
Öz
Günümüzde enerji kullanımında verimlilik hem maliyetlerin yükselmesi hem de çevresel kirliliğin önlenmesi açısından çok önemli bir konumda bulunmaktadır. Enerji kullanımının önemli bir kısmı binalarda gerçekleştiği için binalarda enerji verimliliği ayrıca bir çalışma konusu olmuş, yeşil bina gibi kavramlarla birlikte binalar için enerji sınıfları oluşturulmuştur. Bu enerji sınıfları oluşturulurken dikkate alınan enerji tüketim türlerinden iki çeşidi; ısıtma yükü ve soğutma yüküdür. Binalarda aydınlanma ve havalandırma amaçlı enerji tüketimine kıyasla, ısıtma ve soğutma yükleri enerji tüketimi açısından daha fazla göze çarpmaktadır. Bu çalışmada ısıtma ve soğutma yükleri üzerinden binalarda enerji kullanım tahminleri makine öğrenmesi yöntemleriyle gerçekleştirilmiş, öncesinde yapılan kümeleme analizi ile tahminleme performansının iyileştirilmesi sağlanmaya çalışılmıştır. Analizler sırasında SPSS programı ve Python programlama dili kullanılmıştır.
Kaynakça
-
Abbasimehr, H., Paki, R., & Bahrini, A. (2023). A novel XGBoost-based featurization approach to forecast renewable energy consumption with deep learning models. Sustainable Computing: Informatics and Systems, 38, 100863. https://doi.org/10.1016/j.suscom.2023.100863
-
Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J., Azeem Akram, H. M., Hassnain Mohsan, S. A., & Kazim, M. (2018). Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment. Energy, 158, 17-32. https://doi.org/10.1016/j.energy.2018.05.169
-
Albayrak, Y. doç dr ali S., & Yilmaz, Ö. gör şebnem K. (2009). VERİ MADENCİLİĞİ: KARAR AĞACI ALGORİTMALARI VE İMKB VERİLERİ ÜZERİNE BİR UYGULAMA. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), Article 1.
-
AlMahamid, F., & Grolinger, K. (2022). Agglomerative Hierarchical Clustering with Dynamic Time Warping for Household Load Curve Clustering. 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 241-247. https://doi.org/10.1109/CCECE49351.2022.9918481
-
Al-Rakhami, M., Gumaei, A., Alsanad, A., Alamri, A., & Hassan, M. M. (2019). An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings. IEEE Access, 7, 48328-48338. https://doi.org/10.1109/ACCESS.2019.2909470
-
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. (2024).
-
Aqlan, F., Ahmed, A., Srihari, K., & Khasawneh, M. (2014). Integrating Artificial Neural Networks and Cluster Analysis to Assess Energy Efficiency of Buildings. İçinde IIE Annual Conference and Expo 2014.
-
Aurangzeb, K. (2024). DBSCAN-based energy users clustering for performance enhancement of deep learning model. Journal of Intelligent & Fuzzy Systems, 46(3), 5555-5573. https://doi.org/10.3233/JIFS-235873
-
Bakkelund, D. (2022). Order preserving hierarchical agglomerative clustering. Machine Learning, 111(5), 1851-1901. https://doi.org/10.1007/s10994-021-06125-0
-
Bektas Ekici, B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications, 38(5), 5352-5358. https://doi.org/10.1016/j.eswa.2010.10.021
-
BİNALARDA ENERJİ PERFORMANSI YÖNETMELİĞİ. (t.y.).
-
Birkes, D., & Dodge, D. Y. (2011). Alternative Methods of Regression. John Wiley & Sons.
-
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
-
Canbay, P., & Taş, H. (2022). Yapıların Isıtma ve Soğutma Yükünün Yapay Zeka ile Tahmini. International Journal of Pure and Applied Sciences, 8(2), 478-489. https://doi.org/10.29132/ijpas.1166227
-
cevreselgostergeler.csb.gov.tr. (t.y.). - Çevresel Göstergeler. Geliş tarihi 18 Mart 2024, gönderen https://cevreselgostergeler.csb.gov.tr/sektorlere-gore-nihai-enerji-tuketimi-i-85804
-
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785
-
Cheng, L. K., Selamat, A., Zabil, M. H. M., Selamat, M. H., Alias, R. A., Puteh, F., Mohamed, F., & Krejcar, O. (2019). Comparing the Accuracy of Hierarchical Agglomerative and K-means Clustering on Mobile Augmented Reality Usability Metrics. 2019 IEEE Conference on Big Data and Analytics (ICBDA), 34-40. https://doi.org/10.1109/ICBDA47563.2019.8987044
-
Cheng, M.-Y., & Cao, M.-T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188. https://doi.org/10.1016/j.asoc.2014.05.015
-
Chou, J.-S., & Bui, D.-K. (2014). Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy and Buildings, 82, 437-446. https://doi.org/10.1016/j.enbuild.2014.07.036
-
Cook, R. D. (2015). Linear Hypothesis: Regression (Graphics). İçinde J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition) (Second Edition, ss. 157-161). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.42141-0
-
Coşkun, E., Gündoğan, E., Kaya, M., & Alhajj, R. (2021). Veri madenciliği yöntemleri kullanarak yoğun bakım ünitesindeki hastaların sınıflandırması. Computer Science. https://doi.org/10.53070/bbd.990718
-
Di̇Lber, B., & Özdemi̇R, A. F. (2022). Estimating Heating and Cooling Loads of Energy Efficient Buildings with Tidy Models. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 1091-1106. https://doi.org/10.29130/dubited.939933
-
Doğan, M., & Seçme, D. (2018). Çevre Dostu Binalar ve Yeşil Bina Sertifika Sistemleri.
-
Dong, G., Jin, Y., Wang, S., Li, W., Tao, Z., & Guo, S. (2019). DB-Kmeans:An Intrusion Detection Algorithm Based on DBSCAN and K-means. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), 1-4. https://doi.org/10.23919/APNOMS.2019.8892910
-
Duarte, G. R., Capriles, P., & Lemonge, A. (t.y.). Prediction of energy load of buildings using machine learning methods.
-
Economopoulou, E.-E., Vonitsanos, G., Mylonas, P., & Kanavos, A. (2024). Efficient Energy Disaggregation Using DBSCAN: A Novel Approach for Enhanced Energy Management. Içinde I. Maglogiannis, L. Iliadis, I. Karydis, A. Papaleonidas, & I. Chochliouros (Ed.), Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops (ss. 236-249). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63227-3_16
-
Enerji Verimliliği—T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (t.y.). Geliş tarihi 18 Mart 2024, gönderen https://enerji.gov.tr/enerji-verimliligi
-
Ercan, U. (2022). Havayolu Taşımacılığında Müşteri Memnuniyetinin Makine Öğrenmesi Yöntemleri İle Belirlenmesi. Alanya Akademik Bakış. https://doi.org/10.29023/alanyaakademik.1095574
-
Erdede, S. B., Erdede, B., & Bektaş, S. (2014). SÜRDÜRÜLEBİLİR YEŞİL BİNALAR VE SERTİFİKA SİSTEMLERİNİN DEĞERLENDİRİLMESİ.
-
Fernández, A., & Gómez, S. (2008). Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms. Journal of Classification, 25(1), 43-65. https://doi.org/10.1007/s00357-008-9004-x
-
Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification [J]. Journal of Machine Learning Research - JMLR, 3.
-
Garikapati, P., Balamurugan, K., Latchoumi, T. P., & Malkapuram, R. (2021). A Cluster-Profile Comparative Study on Machining AlSi7/63% of SiC Hybrid Composite Using Agglomerative Hierarchical Clustering and K-Means. Silicon, 13(4), 961-972. https://doi.org/10.1007/s12633-020-00447-9
-
Guo, H., Liu, X., & Zhang, Q. (2024). Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms. AQUA-WATER INFRASTRUCTURE ECOSYSTEMS AND SOCIETY, 73(5), 870-887. https://doi.org/10.2166/aqua.2024.294
-
Gümüşçü, A., Tenekeci, M. E., Beşli, N., İlkhan, M. A., Aslan, E., & Abamor, S. (2018). Yapılarda Isıtma ve Soğutma Yükü Sınıfların Makine Öğrenme Yöntemleri ile Belirlenmesi. Harran Üniversitesi Mühendislik Dergisi, 3(2), Article 2.
-
Güzelkokar, O. (2019). Mevcut Yapıların Sürdürülebilir Yeşil Binalara Dönüştürülmesi.
-
Jahan, I., & Sanam, T. F. (2024). A comprehensive framework for customer retention in E-commerce using machine learning based on churn prediction, customer segmentation, and recommendation. Electronic Commerce Research. https://doi.org/10.1007/s10660-024-09936-0
-
Kavaklioglu, K. (2018). Robust modeling of heating and cooling loads using partial least squares towards efficient residential building design. Journal of Building Engineering, 18, 467-475. https://doi.org/10.1016/j.jobe.2018.04.018
-
Khadka, S., Wagle, A., Dhakal, B., Gautam, R., Nepal, T., Shrestha, A., & Gonzalez-Longatt, F. (2024). Agglomerative Hierarchical Clustering Methodology to Restore Power System considering Reactive Power Balance and Stability Factor Analysis. International Transactions on Electrical Energy Systems, 2024(1), 8856625. https://doi.org/10.1155/2024/8856625
-
Khalil, A. J., Barhoom, A. M., Abu-Nasser, B. S., Musleh, M. M., & Abu-Naser, S. S. (2019). Energy Efficiency Prediction using Artificial Neural Network. 3(9).
-
Khan, A. M., & Osińska, M. (2023). Comparing forecasting accuracy of selected grey and time series models based on energy consumption in Brazil and India. Expert Systems with Applications, 212, 118840. https://doi.org/10.1016/j.eswa.2022.118840
-
Kumar, S., Pal, S. K., & Singh, R. P. (2018). Intra ELM variants ensemble based model to predict energy performance in residential buildings. Sustainable Energy, Grids and Networks, 16, 177-187. https://doi.org/10.1016/j.segan.2018.07.001
-
Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461. https://doi.org/10.1016/S0031-3203(02)00060-2
-
Lu, C., Li, S., Reddy Penaka, S., & Olofsson, T. (2023). Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy, 274, 127334. https://doi.org/10.1016/j.energy.2023.127334
-
Mehmet; Subaşi, M. (2005). Bilimsel Çalışmalarda P-Değerinin Rapor Edilmesi (P<0.01?, P0.05?). Tarım Bilimleri Dergisi, 11(4), 1. https://doi.org/10.1501/Tarimbil_0000000565
-
Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-Means and Alternative Clustering Methods in Modern Power Systems. IEEE Access, 11, 119596-119633. https://doi.org/10.1109/ACCESS.2023.3327640
-
Moradzadeh, A., Mansour-Saatloo, A., Mohammadi-Ivatloo, B., & Anvari-Moghaddam, A. (2020). Performance Evaluation of Two Machine Learning Techniques in Heating and Cooling Loads Forecasting of Residential Buildings. Applied Sciences, 10(11), 3829. https://doi.org/10.3390/app10113829
-
Naji, S., Keivani, A., Shamshirband, S., Alengaram, U. J., Jumaat, M. Z., Mansor, Z., & Lee, M. (2016). Estimating building energy consumption using extreme learning machine method. Energy, 97, 506-516. https://doi.org/10.1016/j.energy.2015.11.037
-
Naji, S., Shamshirband, S., Basser, H., Keivani, A., Alengaram, U. J., Jumaat, M. Z., & Petković, D. (2016). Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 53, 1520-1528. https://doi.org/10.1016/j.rser.2015.09.062
-
Namli, E., & Yücel, M. (2018). YAPAY ZEKÂ MODELLERİ İLE BETONARME YAPILARA AİT ENERJİ PERFORMANS SINIFLARININ TAHMİNİ. Uludağ University Journal of The Faculty of Engineering, 22(3), 325-346. https://doi.org/10.17482/uumfd.332320
-
Nilashi, M., Dalvi-Esfahani, M., Ibrahim, O., Bagherifard, K., Mardani, A., & Zakuan, N. (2017). A soft computing method for the prediction of energy performance of residential buildings. Measurement, 109, 268-280. https://doi.org/10.1016/j.measurement.2017.05.048
-
Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022). Machine learning for energy performance prediction at the design stage of buildings. Energy for Sustainable Development, 66, 12-25. https://doi.org/10.1016/j.esd.2021.11.002
-
Peker, M., Özkaraca, O., & Kesimal, B. (2017). Enerji Tasarruflu Bina Tasarımı İçin Isıtma ve Soğutma Yüklerini Regresyon Tabanlı Makine Öğrenmesi Algoritmaları İle Modelleme. Bilişim Teknolojileri Dergisi, 443-449. https://doi.org/10.17671/gazibtd.310154
-
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
-
Roy, S. S., Samui, P., Nagtode, I., Jain, H., Shivaramakrishnan, V., & Mohammadi-ivatloo, B. (2020). Forecasting heating and cooling loads of buildings: A comparative performance analysis. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1253-1264. https://doi.org/10.1007/s12652-019-01317-y
-
Sajjad, M., Khan, S. U., Khan, N., Haq, I. U., Ullah, A., Lee, M. Y., & Baik, S. W. (2020). Towards Efficient Building Designing: Heating and Cooling Load Prediction via Multi-Output Model. Sensors, 20(22), 6419. https://doi.org/10.3390/s20226419
-
Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications. Data Mining and Knowledge Discovery, 2(2), 169-194. https://doi.org/10.1023/A:1009745219419
-
Sekhar Roy, S., Roy, R., & Balas, V. E. (2018). Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renewable and Sustainable Energy Reviews, 82, 4256-4268. https://doi.org/10.1016/j.rser.2017.05.249
-
Seyedzadeh, S., Pour Rahimian, F., Rastogi, P., & Glesk, I. (2019). Tuning machine learning models for prediction of building energy loads. Sustainable Cities and Society, 47, 101484. https://doi.org/10.1016/j.scs.2019.101484
-
Sholahudin, Alam, A. G., Baek, C. I., & Han, H. (2016). Prediction and Analysis of Building Energy Efficiency Using Artificial Neural Network and Design of Experiments. Applied Mechanics and Materials, 819, 541-545. https://doi.org/10.4028/www.scientific.net/AMM.819.541
-
Sonmez, Y., Guvenc, U., Kahraman, H. T., & Yilmaz, C. (2015). A comperative study on novel machine learning algorithms for estimation of energy performance of residential buildings. 2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG), 1-7. https://doi.org/10.1109/SGCF.2015.7354915
-
Şükür, F. Z. (t.y.). YILDIZ TEKNİK ÜNİVERSİTESİ İKLİM DEĞİŞİKLİĞİ EYLEM PLANI.
-
Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49, 560-567. https://doi.org/10.1016/j.enbuild.2012.03.003
-
Wang, D., Lu, X., & Rinaldo, A. (t.y.). DBSCAN: Optimal Rates For Density-Based Cluster Estimation.
-
Yang, F., Gao, P., & Lu, Y. (2016). Evolving Resilient Back-Propagation Algorithm for Energy Efficiency Problem. MATEC Web of Conferences, 77, 06016. https://doi.org/10.1051/matecconf/20167706016
-
Yildiz, M. E., Beyhan, F., & Uçar, M. K. (2021). Enerji Verimli Bina Tasarımı için Yapay Sinir Ağları ile Isıtma Soğutma Yükünün Belirlenmesi. Academic Perspective Procedia, 4(1), 91-100. https://doi.org/10.33793/acperpro.04.01.17
-
Yu, H., Zhong, F., Du, Y., Xie, X., Wang, Y., Zhang, X., & Huang, S. (2023). Short-term cooling and heating loads forecasting of building district energy system based on data-driven models. Energy and Buildings, 298, 113513. https://doi.org/10.1016/j.enbuild.2023.113513
-
Yüce, T., & Kabak, M. (t.y.). Makine Öğrenmesi Algoritmaları ile Detay Üretim Alanları İçin İş Merkezi Kırılımında Üretim Süresi Tahminleme.
-
Zekić-Sušac, M., Scitovski, R., & Has, A. (2018). Cluster analysis and artificial neural networks in predicting energy efficiency of public buildings as a cost-saving approach. Croatian Review of Economic, Business and Social Statistics, 4(2), 57-66. https://doi.org/10.2478/crebss-2018-0013
-
Zhang, C., Chen, X., Wang, S., Hu, J., Wang, C., & Liu, X. (2021). Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011–2018. Psychiatry Research, 306, 114261. https://doi.org/10.1016/j.psychres.2021.114261
-
Zurini, M. (2013). Comparative Analysis of K-Means and Dbscan Algorithms. Içinde C. Boja, L. Batagan, M. Doinea, C. Ciurea, P. Pocatilu, A. Ion, R. Magos, L. Cotfas, A. Velicanu, C. Amancei, M. Andreica, & A. Zamfiroiu (Ed.), INTERNATIONAL CONFERENCE ON INFORMATICS IN ECONOMY (ss. 646-651). Bucharest Univ Economic Studies-Ase.