Araştırma Makalesi
BibTex RIS Kaynak Göster

The Histological Effects of Salt Stress on the Digestive Tract of Pseudotropheus acei Fish

Yıl 2025, Cilt: 15 Sayı: 4, 1472 - 1489, 15.12.2025
https://doi.org/10.31466/kfbd.1600454

Öz

The digestive tract is responsible for food digestion in fish, as it is in all living organisms. Feeding habits, canal structure, and morphology of fish vary among species. The mucous cells in the mucosal layer of the digestive tract are influenced by factors such as salinity, ion regulation, pH, pollutants, parasites, and stress. Salinity is one of the most important factors affecting fish growth, nutrition, metabolism, and other physiological activities. In our experimental study, different concentrations of salt were applied to Pseudotropheus acei fish. It was observed that the fish adapted to a maximum salinity of 27 ppt and died at higher salinities. The digestive tract tissues of both control and salinity-adapted fish were examined histologically. The histological studies revealed that the digestive tract of Pseudotropheus acei consisted of four layers: serous, muscularis, submucosa, and mucosa. Mucus cells in the digestive tract of fish exposed to salt stress were counted from 15 different regions and statistically analyzed. Statistical analysis revealed that the number of mucus cells containing neutral glycoconjugates was 267.4 in the control group, 328.66 in the 20 ppt group, and 360 in the 27 ppt group. The densities of neutral, carboxylated, O-sulfate ester, strongly sulfated, and sulfated glycoconjugates in the mucus cells, important cells within the digestive tract, were determined histochemically using Periodic Acid/Schiff (PAS), Alcian Blue at pH 2.5, Alcian Blue at pH 1.0, Alcian Blue at pH 0.5, and Aldehyde Fuchsin stains. It was concluded that salinity stress had a significant effect on the mucus cell densities and content in fish living in aquatic environments.

Proje Numarası

1919B012213680

Kaynakça

  • Abdel-Latif, H. M., Ahmed, H. A., Shukry, M., Khafaga, A. F., Elkhayat, B. K., Abdel-Tawwab, M., and Abd-elaziz, R. A. (2023). Growth Performance, Physiological Responses, and Histoarchitectural Changes in Juvenile Pangasianodon hypophthalmus under Different Environmental Salinities. Fishes, 8(6), 282.
  • Banan Khojasteh, S. M. (2012). The morphology of the post-gastric alimentary canal in teleost fishes: a brief review. International Journal of Aquatic Science, 3(2), 71-88.
  • Bezirci, G., Akkas, S. B., Rinke, K., Yildirim, F., Kalaylioglu, Z., Severcan, F., and Beklioglu, M. (2012). Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex. Ecotoxicology, 21, 601-614. https://doi.org/10.1007/s10646-011-0820-0
  • Cao, X.J., and Wang, W.M. (2009). Histologyand mucinhistochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco. Anatomia, Histologia, Embryologia, 38, 254–261. https://doi.org/10.1111/j.1439-0264.2009.00932.x
  • Diaz, A. O., García, A. M., and Goldemberg, A. L. (2008). Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: a histochemical study. Acta Histochemica, 110(1), 76-85. https://doi.org/10.1016/j.acthis.2007.08.002
  • Domeneghini, C., Straini, R. P., and Veggetti, A. (1998). Gut glycoconjugates in Sparus aurata L.(Pisces, Teleostei). A comparative histochemical study in larval and adult ages. Histology and Histopathology, 13(2), 359-372.
  • Domeneghini, C., Arrighi, S., Radaelli, G., Bosi, G., and Veggetti, A. (2005). Histochemical analysis of glycoconjugate secretion in the alimentary canal of Anguilla anguilla L. Acta histochemica, 106(6), 477-487. https://doi.org/10.1016/j.acthis.2004.07.007
  • Elia, A. C., Capucchio, M. T., Caldaroni, B., Magara, G., Dörr, A. J. M., Biasato, I., and Gasco, L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496, 50-57. https://doi.org/10.1016/j.aquaculture.2018.07.009
  • Evans, D. H., Piermarini, P. M., and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85(1), 97-177. https://doi.org/10.1152/physrev.00050.2003
  • Farrell, A. (2011). Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press, Cambridge, MA.
  • Formicki, K., and Kirschbaum, F. (Eds.). (2019). The histology of fishes. CRC Press.
  • Fridman, S., Bron, J., and Rana, K. (2012). Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture, 334, 182-190. https://doi.org/10.1016/j.aquaculture.2011.12.034
  • Genten, F., Terwinghe, E., & Danguy, A. (2009). Atlas of fish histology. CRC Press.
  • Gonzalez Neves dos Santos, A. F., Neves dos Santos, L., and Gerson Araújo, F. (2011). Digestive tract morphology of the Neotropical piscivorous fish Cichla kelberi (Perciformes: Cichlidae) introduced into an oligotrophic Brazilian reservoir. Revista de Biología Tropical, 59(3), 1245-1255.
  • Grau, A., Crespo, S., Sarasquete, M. C., and De Canales, M. G. (1992). The digestive tract of the amberjack Seriola dumerili, Risso: a light and scanning electron microscope study. Journal of Fish Biology, 41(2), 287-303. https://doi.org/10.1111/j.1095-8649.1992.tb02658.x
  • Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., and Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x
  • Johansson, M. E., Ambort, D., Pelaseyed, T., Schütte, A., Gustafsson, J. K., Ermund, A., and Hansson, G. C. (2011). Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 68, 3635-3641. https://doi.org/10.1007/s00018-011-0822-3
  • Johansson, M. E., Sjövall, H., and Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature reviews Gastroenterology & hepatology, 10(6), 352-361. https://doi.org/10.1038/nrgastro.2013.35
  • Jiang, Y., Yuan, C., Qi, M., Liu, Q., and Hu, Z. (2022). The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp (Hypophthalmichthys molitrix). Biology, 11(11), 1580. https://doi.org/10.3390/biology11111580
  • Lai, S. K., Wang, Y. Y., and Hanes, J. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 61(2), 158-171. https://doi.org/10.1016/j.addr.2008.11.002
  • Lazado, C. C., and Caipang, C. M. A. (2014). Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), 78-89. https://doi.org/10.1016/j.fsi.2014.04.015
  • Leknes, I. L. (2015). Goblet cells and mucus types in the digestive intestine and respiratory intestine in bronze Corydoras (Callichthyidae: Teleostei). Anatomia, Histologia, Embryologia, 44(5), 321-327.
  • Lim, C. H., Bot, A. G., de Jonge, H. R., and Tilly, B. C. (2007). Osmosignaling and volume regulation in intestinal epithelial cells. Methods in enzymology, 428, 325-342. https://doi.org/10.1016/S0076-6879(07)28019-X
  • Loretz, C. A. (1995). 2 Electrophysiology of ion transport in teleost intestinal cells. In Fish physiology (Vol. 14, pp. 25-56). Academic Press. https://doi.org/10.1016/S1546-5098(08)60241-1
  • Luzzana, U., Valfrè, F., Mangiarotti, M., Domeneghini, C., Radaelli, G., Moretti, V. M., and Scolari, M. (2005). Evaluation of different protein sources in fingerling grey mullet Mugil cephalus practical diets. Aquaculture International, 13, 291-303. https://doi.org/10.1007/s10499-004-3099-9
  • Morrison, C. M., and Wright Jr, J. R. (1999). A study of the histology of the digestive tract of the Nile tilapia. Journal of Fish Biology, 54(3), 597-606. https://doi.org/10.1111/j.1095-8649.1999.tb00638.x
  • Ortiz-Delgado, J. B., Iglesias-Estévez, J., Sánchez-Conde, F. J., Cal, R., Lago-Rouco, M. J., Otero-Pinzas, J. J., and Sarasquete, C. (2012). A Morphohistological and Histochemical study of hatchery-reared European hake, Merluccius merluccius (Linnaeus, 1758), during the lecito-exotrophic larval phase. Centro Oceanográfico de Vigo. https://doi.org/10.3989/scimar.03424.03C
  • Overton, J. L., Bayley, M., Paulsen, H., and Wang, T. (2008). Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture, 277(3-4), 282-286. https://doi.org/10.1016/j.aquaculture.2008.02.029
  • Paone, P., and Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut, 69(12), 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260
  • Peterson-Curtis, T. L. (1997). Effects of salinity on survival, growth, metabolism, and behavior in juvenile hogchokers, Trinectes maculatus fasciatus (Achiridae). Environmental Biology of Fishes, 49, 323-331.
  • Petrinec, Z., Nejedli, S., Kuzir, S., and Opacak, A. (2005). Mucosubstances of the digestive tract mucosa in northern pike (Esox lucius L.) and european catfish (Silurus glanis L.). Veterinarski Arhiv, 75(4), 317.
  • Purushothaman, K., Lau, D., Saju, J. M., Sk, S. M., Lunny, D. P., Vij, S., and Orbán, L. (2016). Morpho-histological characterisation of the alimentary canal of an important food fish, Asian seabass (Lates calcarifer). PeerJ, 4, 2377-2397.
  • Peyghan, R., and Powell, M. D. (2006). Histopathological study of gills in experimentally amoebic gill disease (AGD) infected Atlantic salmon, Salmo salar, L. Iranian Journal of Veterinary Research, 7(4), 8-13.
  • Roberton, A. M., and Wright, D. P. (1997). Bacterial glycosulphatases and sulphomucin degradation. Canadian Journal of Gastroenterology and Hepatology, 11, 361-366. https://doi.org/10.1155/1997/642360
  • Roberts, S. D., and Powell, M. D. (2003). Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134(3), 525-537.
  • Salinas, I. (2015). The mucosal immune system of teleost fish. Biology, 4(3), 525-539. https://doi.org/10.3390/biology4030525
  • Sanden, M., Berntssen, M. H. G., Krogdahl, Å., Hemre, G. I., and Bakke‐McKellep, A. M. (2005). An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize. Journal of Fish Diseases, 28(6), 317-330. https://doi.org/10.1111/j.1365-2761.2005.00618.x
  • Sarma, K., Prabakaran, K., Krishnan, P., Grinson, G., & Anand Kumar, A. (2013). Response of a freshwater air-breathing fish, Clarias batrachus to salinity stress: an experimental case for their farming in brackishwater areas in Andaman, India. Aquaculture International, 21(1), 183-196.
  • Sarasquete, C., Gisbert, E., Ribeiro, L., Vieira, L., & Dinis, M. T. (2001). Glyconjugates in epidermal, branchial and digestive mucous cells and gastric glands of gilthead sea bream, Sparus aurata, Senegal sole, Solea senegalensis and Siberian sturgeon, Acipenser baeri development. European Journal of Histochemistry, 45(3), 267-78. https://doi.org/10.4081/1637
  • Shephard, K. L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4, 401-429. https://doi.org/10.1007/BF00042888
  • Shi Ge, S. G., Wang JianXin, W. J., Liu XueZhu, L. X., and Wang RiXin, W. R. (2007). Study on the histology and histochemistry of the digestive tract of Sebastiscus marmoratus. Journal of Fisheries of China, 31, 293–302.
  • Sellner, K. G., Lacouture, B. R., and Parrish, C. R. (1988). Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. Journal of Plankton Research, 10(1), 49-61. https://doi.org/10.1093/plankt/10.1.49
  • Smith, H. W. (1930). The absorption and excretion of water and salts by marine teleosts. American Journal of Physiology-Legacy Content, 93(2), 480-505. https://doi.org/10.1152/ajplegacy.1930.93.2.480
  • Stolfi, C., Maresca, C., Monteleone, G., and Laudisi, F. (2022). Implication of intestinal barrier dysfunction in gut dysbiosis and diseases. Biomedicines, 10(2), 289. https://doi.org/10.3390/biomedicines10020289
  • Suresh, A. V., and Lin, C. K. (1992). Tilapia culture in saline waters: a review. Aquaculture, 106(3-4), 201-226. https://doi.org/10.1016/0044-8486(92)90253-H
  • Takashima F, Hibiya T (1995). An atlas of fish histology. Normal and pathological features, second ed. Kodansha Ltd., Tokyo.
  • Tibbetts, I. R. (1997). The distribution and function of mucous cells and their secretions in the alimentary tract of Arrhamphus sclerolepis krefftii. Journal of Fish Biology, 50(4), 809-820. https://doi.org/10.1111/j.1095-8649.1997.tb01974.x
  • Tran-Ngoc, K. T., Schrama, J. W., Le, M. T., Nguyen, T. H., Roem, A. J., and Verreth, J. A. (2017). Salinity and diet composition affect digestibility and intestinal morphology in Nile tilapia (Oreochromis niloticus). Aquaculture, 469, 36-43. https://doi.org/10.1016/j.aquaculture.2016.11.037
  • Uribe, R., and Sibbing, F. A. (1984). Regional specializations in the oro-pharyngeal wall and food processing in the carp (Cyprinus carpio L.). Netherlands Journal of Zoology, 35(3), 377-422.
  • Vidal, M. R., Ruiz, T. F., Dos Santos, D. D., Gardinal, M. V., de Jesus, F. L, Faccioli, C.K., and Vicentini, C.A. (2020). Morphological and histochemical characterisation of the mucosa of the digestive tract in matrinxã Brycon amazonicus (Teleostei: Characiformes). Journal of Fish Biology, 96(1), 251-260. https://doi.org/10.1111/jfb.14217

Tuz Stresinin Pseudotropheus acei Balığının Sindirim Kanalı Üzerindeki Histolojik Etkileri

Yıl 2025, Cilt: 15 Sayı: 4, 1472 - 1489, 15.12.2025
https://doi.org/10.31466/kfbd.1600454

Öz

Sindirim kanalı tüm canlılarda olduğu gibi balıklarda da besinlerin sindiriminden sorumlu organdır. Balıkların beslenme şekli, kanal yapısı ve morfolojisi türden türe farklılık göstermektedir. Balıklarda sindirim kanalı mukoza tabakasında bulunan mukus hücreleri tuzluluk, iyon regülasyonu, pH, kirletici, parazit ve stres gibi faktörlerden etkilenmektedir. Tuzluluk balık büyümesi, beslenmesi, metabolizması ve diğer fizyolojik aktiviteleri etkileyen en önemli parametrelerden biridir. Bu çalışmada Pseudotropheus acei balıklarına farklı tuz konsantrasyonları uygulandı. Uygulama sonucunda balıkların en fazla 27 ppt tuzluluğa adapte olduğu daha yüksek tuzluluklarda ise öldüğü gözlendi. Kontrol ve tuzluluğa adapte olan gruplardaki balıkların sindirim kanalları histolojik olarak incelendi. Yapılan çalışmalar sonucunda Pseudotropheus acei balığı sindirim kanalının seröz, muskularis, submukoza ve mukoza tabakalarından oluştuğu görüldü. Tuz stresine maruz kalan balıkların sindirim kanalı mukus hücreleri 15 farklı bölgeden sayılarak istatistiksel olarak analiz edilmiştir. İstatiksel analiz sonucu, nötral glikokonjugat içeren mukus hücre sayısının kontrol grubunda 267.4, 20 ppt grubunda 328.66 ve 27 ppt grubunda 360 olduğu görüldü. Sindirim kanalında bulunan önemli hücrelerden biri olan mukus hücrelerinin nötral, karboksilatlı, O-sülfat esterli, güçlü sülfatlı ve sülfatlanmış glikokonjugat yoğunlukları Periyodik Asit/Schiff (PAS), Alcian Blue pH 2.5, Alcian Blue pH 1.0, Alcian Blue pH 0.5 ve Aldehit fuksin&Alcian Blue pH 2.5 boyaları ile histokimyasal olarak belirlendi. Tuzluluk stresinin balıklarda sindirim kanalında bulunan mukus hücre yoğunlukları ve içeriği üzerine etkili olduğu görüldü.

Etik Beyan

Van Yüzüncü Yıl Üniversitesi Hayvan Araştırmacıları Yerel Etik Kurulu (YUHADYEK 2023/05-36)

Destekleyen Kurum

TÜBİTAK 2209-A üniversite öğrencileri araştırma destek programı

Proje Numarası

1919B012213680

Kaynakça

  • Abdel-Latif, H. M., Ahmed, H. A., Shukry, M., Khafaga, A. F., Elkhayat, B. K., Abdel-Tawwab, M., and Abd-elaziz, R. A. (2023). Growth Performance, Physiological Responses, and Histoarchitectural Changes in Juvenile Pangasianodon hypophthalmus under Different Environmental Salinities. Fishes, 8(6), 282.
  • Banan Khojasteh, S. M. (2012). The morphology of the post-gastric alimentary canal in teleost fishes: a brief review. International Journal of Aquatic Science, 3(2), 71-88.
  • Bezirci, G., Akkas, S. B., Rinke, K., Yildirim, F., Kalaylioglu, Z., Severcan, F., and Beklioglu, M. (2012). Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex. Ecotoxicology, 21, 601-614. https://doi.org/10.1007/s10646-011-0820-0
  • Cao, X.J., and Wang, W.M. (2009). Histologyand mucinhistochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco. Anatomia, Histologia, Embryologia, 38, 254–261. https://doi.org/10.1111/j.1439-0264.2009.00932.x
  • Diaz, A. O., García, A. M., and Goldemberg, A. L. (2008). Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: a histochemical study. Acta Histochemica, 110(1), 76-85. https://doi.org/10.1016/j.acthis.2007.08.002
  • Domeneghini, C., Straini, R. P., and Veggetti, A. (1998). Gut glycoconjugates in Sparus aurata L.(Pisces, Teleostei). A comparative histochemical study in larval and adult ages. Histology and Histopathology, 13(2), 359-372.
  • Domeneghini, C., Arrighi, S., Radaelli, G., Bosi, G., and Veggetti, A. (2005). Histochemical analysis of glycoconjugate secretion in the alimentary canal of Anguilla anguilla L. Acta histochemica, 106(6), 477-487. https://doi.org/10.1016/j.acthis.2004.07.007
  • Elia, A. C., Capucchio, M. T., Caldaroni, B., Magara, G., Dörr, A. J. M., Biasato, I., and Gasco, L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496, 50-57. https://doi.org/10.1016/j.aquaculture.2018.07.009
  • Evans, D. H., Piermarini, P. M., and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85(1), 97-177. https://doi.org/10.1152/physrev.00050.2003
  • Farrell, A. (2011). Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press, Cambridge, MA.
  • Formicki, K., and Kirschbaum, F. (Eds.). (2019). The histology of fishes. CRC Press.
  • Fridman, S., Bron, J., and Rana, K. (2012). Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture, 334, 182-190. https://doi.org/10.1016/j.aquaculture.2011.12.034
  • Genten, F., Terwinghe, E., & Danguy, A. (2009). Atlas of fish histology. CRC Press.
  • Gonzalez Neves dos Santos, A. F., Neves dos Santos, L., and Gerson Araújo, F. (2011). Digestive tract morphology of the Neotropical piscivorous fish Cichla kelberi (Perciformes: Cichlidae) introduced into an oligotrophic Brazilian reservoir. Revista de Biología Tropical, 59(3), 1245-1255.
  • Grau, A., Crespo, S., Sarasquete, M. C., and De Canales, M. G. (1992). The digestive tract of the amberjack Seriola dumerili, Risso: a light and scanning electron microscope study. Journal of Fish Biology, 41(2), 287-303. https://doi.org/10.1111/j.1095-8649.1992.tb02658.x
  • Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., and Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x
  • Johansson, M. E., Ambort, D., Pelaseyed, T., Schütte, A., Gustafsson, J. K., Ermund, A., and Hansson, G. C. (2011). Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 68, 3635-3641. https://doi.org/10.1007/s00018-011-0822-3
  • Johansson, M. E., Sjövall, H., and Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature reviews Gastroenterology & hepatology, 10(6), 352-361. https://doi.org/10.1038/nrgastro.2013.35
  • Jiang, Y., Yuan, C., Qi, M., Liu, Q., and Hu, Z. (2022). The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp (Hypophthalmichthys molitrix). Biology, 11(11), 1580. https://doi.org/10.3390/biology11111580
  • Lai, S. K., Wang, Y. Y., and Hanes, J. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 61(2), 158-171. https://doi.org/10.1016/j.addr.2008.11.002
  • Lazado, C. C., and Caipang, C. M. A. (2014). Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), 78-89. https://doi.org/10.1016/j.fsi.2014.04.015
  • Leknes, I. L. (2015). Goblet cells and mucus types in the digestive intestine and respiratory intestine in bronze Corydoras (Callichthyidae: Teleostei). Anatomia, Histologia, Embryologia, 44(5), 321-327.
  • Lim, C. H., Bot, A. G., de Jonge, H. R., and Tilly, B. C. (2007). Osmosignaling and volume regulation in intestinal epithelial cells. Methods in enzymology, 428, 325-342. https://doi.org/10.1016/S0076-6879(07)28019-X
  • Loretz, C. A. (1995). 2 Electrophysiology of ion transport in teleost intestinal cells. In Fish physiology (Vol. 14, pp. 25-56). Academic Press. https://doi.org/10.1016/S1546-5098(08)60241-1
  • Luzzana, U., Valfrè, F., Mangiarotti, M., Domeneghini, C., Radaelli, G., Moretti, V. M., and Scolari, M. (2005). Evaluation of different protein sources in fingerling grey mullet Mugil cephalus practical diets. Aquaculture International, 13, 291-303. https://doi.org/10.1007/s10499-004-3099-9
  • Morrison, C. M., and Wright Jr, J. R. (1999). A study of the histology of the digestive tract of the Nile tilapia. Journal of Fish Biology, 54(3), 597-606. https://doi.org/10.1111/j.1095-8649.1999.tb00638.x
  • Ortiz-Delgado, J. B., Iglesias-Estévez, J., Sánchez-Conde, F. J., Cal, R., Lago-Rouco, M. J., Otero-Pinzas, J. J., and Sarasquete, C. (2012). A Morphohistological and Histochemical study of hatchery-reared European hake, Merluccius merluccius (Linnaeus, 1758), during the lecito-exotrophic larval phase. Centro Oceanográfico de Vigo. https://doi.org/10.3989/scimar.03424.03C
  • Overton, J. L., Bayley, M., Paulsen, H., and Wang, T. (2008). Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture, 277(3-4), 282-286. https://doi.org/10.1016/j.aquaculture.2008.02.029
  • Paone, P., and Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut, 69(12), 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260
  • Peterson-Curtis, T. L. (1997). Effects of salinity on survival, growth, metabolism, and behavior in juvenile hogchokers, Trinectes maculatus fasciatus (Achiridae). Environmental Biology of Fishes, 49, 323-331.
  • Petrinec, Z., Nejedli, S., Kuzir, S., and Opacak, A. (2005). Mucosubstances of the digestive tract mucosa in northern pike (Esox lucius L.) and european catfish (Silurus glanis L.). Veterinarski Arhiv, 75(4), 317.
  • Purushothaman, K., Lau, D., Saju, J. M., Sk, S. M., Lunny, D. P., Vij, S., and Orbán, L. (2016). Morpho-histological characterisation of the alimentary canal of an important food fish, Asian seabass (Lates calcarifer). PeerJ, 4, 2377-2397.
  • Peyghan, R., and Powell, M. D. (2006). Histopathological study of gills in experimentally amoebic gill disease (AGD) infected Atlantic salmon, Salmo salar, L. Iranian Journal of Veterinary Research, 7(4), 8-13.
  • Roberton, A. M., and Wright, D. P. (1997). Bacterial glycosulphatases and sulphomucin degradation. Canadian Journal of Gastroenterology and Hepatology, 11, 361-366. https://doi.org/10.1155/1997/642360
  • Roberts, S. D., and Powell, M. D. (2003). Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134(3), 525-537.
  • Salinas, I. (2015). The mucosal immune system of teleost fish. Biology, 4(3), 525-539. https://doi.org/10.3390/biology4030525
  • Sanden, M., Berntssen, M. H. G., Krogdahl, Å., Hemre, G. I., and Bakke‐McKellep, A. M. (2005). An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize. Journal of Fish Diseases, 28(6), 317-330. https://doi.org/10.1111/j.1365-2761.2005.00618.x
  • Sarma, K., Prabakaran, K., Krishnan, P., Grinson, G., & Anand Kumar, A. (2013). Response of a freshwater air-breathing fish, Clarias batrachus to salinity stress: an experimental case for their farming in brackishwater areas in Andaman, India. Aquaculture International, 21(1), 183-196.
  • Sarasquete, C., Gisbert, E., Ribeiro, L., Vieira, L., & Dinis, M. T. (2001). Glyconjugates in epidermal, branchial and digestive mucous cells and gastric glands of gilthead sea bream, Sparus aurata, Senegal sole, Solea senegalensis and Siberian sturgeon, Acipenser baeri development. European Journal of Histochemistry, 45(3), 267-78. https://doi.org/10.4081/1637
  • Shephard, K. L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4, 401-429. https://doi.org/10.1007/BF00042888
  • Shi Ge, S. G., Wang JianXin, W. J., Liu XueZhu, L. X., and Wang RiXin, W. R. (2007). Study on the histology and histochemistry of the digestive tract of Sebastiscus marmoratus. Journal of Fisheries of China, 31, 293–302.
  • Sellner, K. G., Lacouture, B. R., and Parrish, C. R. (1988). Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. Journal of Plankton Research, 10(1), 49-61. https://doi.org/10.1093/plankt/10.1.49
  • Smith, H. W. (1930). The absorption and excretion of water and salts by marine teleosts. American Journal of Physiology-Legacy Content, 93(2), 480-505. https://doi.org/10.1152/ajplegacy.1930.93.2.480
  • Stolfi, C., Maresca, C., Monteleone, G., and Laudisi, F. (2022). Implication of intestinal barrier dysfunction in gut dysbiosis and diseases. Biomedicines, 10(2), 289. https://doi.org/10.3390/biomedicines10020289
  • Suresh, A. V., and Lin, C. K. (1992). Tilapia culture in saline waters: a review. Aquaculture, 106(3-4), 201-226. https://doi.org/10.1016/0044-8486(92)90253-H
  • Takashima F, Hibiya T (1995). An atlas of fish histology. Normal and pathological features, second ed. Kodansha Ltd., Tokyo.
  • Tibbetts, I. R. (1997). The distribution and function of mucous cells and their secretions in the alimentary tract of Arrhamphus sclerolepis krefftii. Journal of Fish Biology, 50(4), 809-820. https://doi.org/10.1111/j.1095-8649.1997.tb01974.x
  • Tran-Ngoc, K. T., Schrama, J. W., Le, M. T., Nguyen, T. H., Roem, A. J., and Verreth, J. A. (2017). Salinity and diet composition affect digestibility and intestinal morphology in Nile tilapia (Oreochromis niloticus). Aquaculture, 469, 36-43. https://doi.org/10.1016/j.aquaculture.2016.11.037
  • Uribe, R., and Sibbing, F. A. (1984). Regional specializations in the oro-pharyngeal wall and food processing in the carp (Cyprinus carpio L.). Netherlands Journal of Zoology, 35(3), 377-422.
  • Vidal, M. R., Ruiz, T. F., Dos Santos, D. D., Gardinal, M. V., de Jesus, F. L, Faccioli, C.K., and Vicentini, C.A. (2020). Morphological and histochemical characterisation of the mucosa of the digestive tract in matrinxã Brycon amazonicus (Teleostei: Characiformes). Journal of Fish Biology, 96(1), 251-260. https://doi.org/10.1111/jfb.14217
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Enes Yıldırım 0009-0005-1465-5037

Zehra Alkan 0000-0003-2591-0839

Ahmet Regaib Oğuz 0000-0001-6431-0508

Proje Numarası 1919B012213680
Gönderilme Tarihi 12 Aralık 2024
Kabul Tarihi 5 Aralık 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Yıldırım, E., Alkan, Z., & Oğuz, A. R. (2025). Tuz Stresinin Pseudotropheus acei Balığının Sindirim Kanalı Üzerindeki Histolojik Etkileri. Karadeniz Fen Bilimleri Dergisi, 15(4), 1472-1489. https://doi.org/10.31466/kfbd.1600454