Araştırma Makalesi
BibTex RIS Kaynak Göster

Mechanical and Thermal Characterization of Basalt and Hemp Fiber Reinforced Polylactide (PLA) Based Hybrid Bio-Composites

Yıl 2025, Cilt: 15 Sayı: 3, 1184 - 1195, 15.09.2025
https://doi.org/10.31466/kfbd.1638924

Öz

Developing sustainable and eco-composites using matrix polymers and natural reinforcements from renewable resources or agro wastes has gained significant attention recently. In this context, biodegradable polylactide (PLA) polymer, basalt fiber (BF) - recognized as one of the green materials of this century - and hemp fiber (HF), which is increasingly valued globally and nationally, are promising candidates for inclusion in such composites. This study aims to create PLA-based hybrid biocomposites reinforced with BF and HF, investigating their mechanical, thermal, and morphological properties. The hybrid bio-composites with varying BF and HF contents (5-20%) were fabricated via melt mixing and subsequently shaped through injection molding by relevant test standards. The mechanical properties of the composites were assessed through tensile and hardness tests, thermal properties through the TGA, and morphological features through the SEM analysis. While adding 10% BF and HF in PLA showed the hybrid effect, a considerable improvement in mechanical properties was recorded, especially with a 15% increase in tensile strength. This research will optimize fiber ratios and processing parameters to enhance PLA bio composites' mechanical and thermal performance, thereby expanding the potential functional applications of PLA biopolymers.

Etik Beyan

The authors declare that this study complies with Research and Publication Ethics.

Destekleyen Kurum

The Scientific and Technological Research Council of Türkiye (TÜBİTAK)

Proje Numarası

1919B012304512

Teşekkür

This study was supported by TUBITAK 2209-A University Students Research Projects Support Program under application no. 1919B012304512.

Kaynakça

  • Aliotta, L., Gigante, V., Coltelli, M.-B., Cinelli, P., Lazzeri, A., and Seggiani, M. (2019). Thermo-mechanical properties of PLA/short flax fiber biocomposites. Applied Sciences, 9(18), 3797.
  • ASTM D638: 1993. Standard test method for tensile properties of plastics., American Society for Testing and Materials, USA.
  • Ayyampilli, S. P., and Suresh, R. (2025). Study on mechanical and flammability properties of natural fibre polymer composites. Green Materials, 1-11.
  • Bajpai, P. K., Singh, I., and Madaan, J. (2014). Development and characterization of PLA-based green composites:A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81.
  • Bhat, T., Fortomaris, D., Kandare, E., and Mouritz, A. P. (2017). Properties of thermally recycled basalt fibres and basalt fibre composites. Journal of Materials Science, 53(3), 1933-1944.
  • Both, A. K., Helle, M. A., Madireddy, G., and Cheung, C. L. (2021). Green chemical approach to fabricate hemp fiber composites for making sustainable hydroponic growth media. ACS Agricultural Science & Technology, 1(5), 499-506.
  • Celik, E., Uysal, M., Gumus, O. Y., and Tasdemir, C. (2025). 3D-Printed Biocomposites from Hemp Fibers Reinforced Polylactic Acid: Thermal, Morphology, and Mechanical Performance. BioResources, 20(1).
  • Çevik Elen, N., Yıldırım, M., and Kanbur, Y. (2025). Examining the mechanical and biodegradable characteristics of hemp fiber added PLA bio-composites with various modifications. Journal of Thermoplastic Composite Materials, 08927057251316234.
  • Deng, H., Wei, X., Wang, C., Yang, J., and Li, Z. (2021). Effects of cryogenic treatment and interface modifications of basalt fibre on the mechanical properties of hybrid fibre-reinforced composites. e-Polymers, 21, 625–635.
  • Dincer, U., Karsli, N. G., Sahin, T., and Yilmaz, T. (2024). Analysis of the effect of boric acid and compatibilizer addition to polylactic acid/basalt fiber composites. Polymer Composites, 45(16), 15005-15019.
  • Dixit, S., Goel, R., Dubey, A., Shivhare, P. R., and Bhalavi, T. (2017). Natural Fibre Reinforced Polymer Composite Materials - A Review. Polymers from Renewable Resources, 8(2), 71-78.
  • Dong, C. (2017). Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 37(5), 331-348.
  • Eselini, N., Tirkes, S., Akar, A. O., and Tayfun, U. (2020). Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. Journal of Elastomers & Plastics, 52(8), 701-716.
  • Fiore, V., Scalici, T., Di Bella, G., and Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74-94.
  • Gur’ev, V. V., Neproshin, E. I., and Mostovoi, G. E. (2001). The effect of basalt fiber production technology on mechanical properties of fiber. Glass and Ceramics, 58(1-2), 62-65.
  • Ilyas, R., Zuhri, M., Aisyah, H., Asyraf, M., Hassan, S., Zainudin, E., Sapuan, S., Sharma, S., Bangar, S., and Jumaidin, R. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202.
  • ISO 48-4: 2018 Rubber, vulcanized or thermoplastic — Determination of hardness, Part 4: Indentation hardness by durometer method (Shore hardness). International Organization for Standardization, Switzerland.
  • Jagadeesh, P., Rangappa, S. M., and Siengchin, S. (2024). Basalt fibers: An environmentally acceptable and sustainable green material for polymer composites. Construction and Building Materials, 436.
  • Li, X., Tabil, L. G., and Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15, 25-33.
  • Lopresto, V., Leone, C., and De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723.
  • Mann, G. S., Singh, L. P., Kumar, P., and Singh, S. (2018). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145-1171.
  • Murariu, M., and Dubois, P. (2016). PLA composites: From production to properties. Advanced drug delivery reviews, 107, 17-46.
  • Özsoy, N., and Sancak, E. (2024). Determining the mechanical properties of biomaterial-based economic thermoplastic composites reinforced with hemp fibres. Industria Textila, 75(4), 405-414.
  • Öztürk, S. (2005). The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites. Journal of Materials Science, 40(17), 4585-4592.
  • Plappert, D., Ganzenmüller, G. C., May, M., and Beisel, S. (2020). Mechanical properties of a unidirectional basalt-fiber/epoxy composite. Journal of Composites Science, 4(3), 101.
  • Saheb, D. N., and Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363.
  • Sang, L., Han, S., Li, Z., Yang, X., and Hou, W. (2019). Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 164, 629-639.
  • Sathishkumar, T. P., Naveen, J., and Satheeshkumar, S. (2014). Hybrid fiber reinforced polymer composites – a review. Journal of Reinforced Plastics and Composites, 33(5), 454-471.
  • Seçinti Klopf, H. (2025). Removal of non-cellulosic materials from hemp fiber under ultrasonication conditions and cetyl trimethyl ammonium chloride (CTAC) catalyst. Journal of Innovative Engineering and Natural Science, 5(1), 187-195.
  • Selvaraj, G., Kaliyamoorthy, R., and Kirubakaran, R. (2022). Mechanical, thermogravimetric, and dynamic mechanical analysis of basalt and flax fibers intertwined vinyl ester polymer composites. Polymer Composites, 43(4), 2196-2207.
  • Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S., Asim, M., and Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463.
  • Singha, K. (2012). A short review on basalt fiber. International Journal of Textile Science, 1(4), 19-28.
  • Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., and Bin, Y. (2013). Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method. Journal of Polymers and the Environment, 21(4), 1117-1127.
  • Soykan, U., and Kaya, S. (2023). Role of hemp fiber addition on thermal stability, heat insulation, air permeability and cellular structural features of rigid polyurethane foam. Cellular Polymers, 42(2), 88-104.
  • Tayfun, U., Arslan, Ç., and Doğan, M. (2023). Bazalt elyaf yüzeyindeki silan katmanının polilaktit kompozitlerine güçlendirme etkinliğinin değerlendirilmesi. Journal of Materials and Mechatronics: A, 4(1), 87-99.
  • Ucpinar, B., Sivrikaya, T., and Aytac, A. (2025). Sustainable hemp fiber reinforced polylactic acid/poly (butylene succinate) biocomposites: Assessing the effectiveness of MAH‐g‐PLA as a compatibilizer. Polymer Composites.
  • Yorseng, K., Rangappa, S. M., Ayyappan, V., Srisuk, R., and Siengchin, S. (2024). Bioepoxy based advanced lightweight hybrid composites from hemp fibers: towards greener production. Journal of Building Engineering, 86, 108808.
  • Zimniewska, M. (2022). Hemp Fibre Properties and Processing Target Textile: A Review. Materials (Basel), 15(5).

Bazalt ve Kenevir Elyaf Takviyeli Polilaktid (PLA) Esaslı Hibrit Biyo-Kompozitlerin Mekanik ve Termal Karakterizasyonu

Yıl 2025, Cilt: 15 Sayı: 3, 1184 - 1195, 15.09.2025
https://doi.org/10.31466/kfbd.1638924

Öz

Yenilenebilir kaynaklardan veya tarımsal atıklardan elde edilen matris polimerler ve doğal takviyeler kullanılarak sürdürülebilir ve eko-kompozitlerin geliştirilmesi son yıllarda büyük ilgi görmektedir. Bu bağlamda, biyolojik olarak parçalanabilen polilaktid (PLA) polimeri, bu yüzyılın yeşil malzemelerinden biri olarak kabul edilen bazalt lifi (BF) ve küresel ve ulusal olarak giderek daha fazla değerlenen kenevir lifi (HF), bu tür kompozitlere dâhil edilmek için umut verici adaylardır. Bu çalışma, BF ve HF ile güçlendirilmiş PLA bazlı hibrit biyokompozitler oluşturmayı ve bunların mekanik, termal ve morfolojik özelliklerini incelemeyi amaçlamaktadır. Değişken BF ve HF içeriklerine (%5-20) sahip hibrit biyokompozitler eriyik karıştırma yoluyla üretilmiş ve ardından ilgili test standartlarına göre enjeksiyon kalıplama yoluyla şekillendirilmiştir. Kompozitlerin mekanik özellikleri çekme ve sertlik testleriyle, termal özellikleri TGA ile ve morfolojik özellikleri SEM analiziyle değerlendirilmiştir. PLA'ya ağırlıkça %10 BF ve HF eklenmesi hibrit etki gösterirken, özellikle çekme mukavemetinde %15'lik bir artışla mekanik özelliklerde önemli bir iyileşme kaydedilmiştir. Bu araştırma, PLA biyokompozitlerinin mekanik ve termal performansını artırmak için lif oranlarını ve işleme parametrelerini optimize edecek ve böylece PLA biyopolimerlerinin potansiyel fonksiyonel uygulamalarını genişletecektir.

Etik Beyan

Yazarlar, bu çalışmanın Araştırma ve Yayın Etiğine uygun olduğunu beyan eder.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

1919B012304512

Teşekkür

Bu çalışma TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı tarafından 1919B012304512 başvuru numarası ile desteklenmiştir.

Kaynakça

  • Aliotta, L., Gigante, V., Coltelli, M.-B., Cinelli, P., Lazzeri, A., and Seggiani, M. (2019). Thermo-mechanical properties of PLA/short flax fiber biocomposites. Applied Sciences, 9(18), 3797.
  • ASTM D638: 1993. Standard test method for tensile properties of plastics., American Society for Testing and Materials, USA.
  • Ayyampilli, S. P., and Suresh, R. (2025). Study on mechanical and flammability properties of natural fibre polymer composites. Green Materials, 1-11.
  • Bajpai, P. K., Singh, I., and Madaan, J. (2014). Development and characterization of PLA-based green composites:A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81.
  • Bhat, T., Fortomaris, D., Kandare, E., and Mouritz, A. P. (2017). Properties of thermally recycled basalt fibres and basalt fibre composites. Journal of Materials Science, 53(3), 1933-1944.
  • Both, A. K., Helle, M. A., Madireddy, G., and Cheung, C. L. (2021). Green chemical approach to fabricate hemp fiber composites for making sustainable hydroponic growth media. ACS Agricultural Science & Technology, 1(5), 499-506.
  • Celik, E., Uysal, M., Gumus, O. Y., and Tasdemir, C. (2025). 3D-Printed Biocomposites from Hemp Fibers Reinforced Polylactic Acid: Thermal, Morphology, and Mechanical Performance. BioResources, 20(1).
  • Çevik Elen, N., Yıldırım, M., and Kanbur, Y. (2025). Examining the mechanical and biodegradable characteristics of hemp fiber added PLA bio-composites with various modifications. Journal of Thermoplastic Composite Materials, 08927057251316234.
  • Deng, H., Wei, X., Wang, C., Yang, J., and Li, Z. (2021). Effects of cryogenic treatment and interface modifications of basalt fibre on the mechanical properties of hybrid fibre-reinforced composites. e-Polymers, 21, 625–635.
  • Dincer, U., Karsli, N. G., Sahin, T., and Yilmaz, T. (2024). Analysis of the effect of boric acid and compatibilizer addition to polylactic acid/basalt fiber composites. Polymer Composites, 45(16), 15005-15019.
  • Dixit, S., Goel, R., Dubey, A., Shivhare, P. R., and Bhalavi, T. (2017). Natural Fibre Reinforced Polymer Composite Materials - A Review. Polymers from Renewable Resources, 8(2), 71-78.
  • Dong, C. (2017). Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 37(5), 331-348.
  • Eselini, N., Tirkes, S., Akar, A. O., and Tayfun, U. (2020). Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. Journal of Elastomers & Plastics, 52(8), 701-716.
  • Fiore, V., Scalici, T., Di Bella, G., and Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74-94.
  • Gur’ev, V. V., Neproshin, E. I., and Mostovoi, G. E. (2001). The effect of basalt fiber production technology on mechanical properties of fiber. Glass and Ceramics, 58(1-2), 62-65.
  • Ilyas, R., Zuhri, M., Aisyah, H., Asyraf, M., Hassan, S., Zainudin, E., Sapuan, S., Sharma, S., Bangar, S., and Jumaidin, R. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202.
  • ISO 48-4: 2018 Rubber, vulcanized or thermoplastic — Determination of hardness, Part 4: Indentation hardness by durometer method (Shore hardness). International Organization for Standardization, Switzerland.
  • Jagadeesh, P., Rangappa, S. M., and Siengchin, S. (2024). Basalt fibers: An environmentally acceptable and sustainable green material for polymer composites. Construction and Building Materials, 436.
  • Li, X., Tabil, L. G., and Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15, 25-33.
  • Lopresto, V., Leone, C., and De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723.
  • Mann, G. S., Singh, L. P., Kumar, P., and Singh, S. (2018). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145-1171.
  • Murariu, M., and Dubois, P. (2016). PLA composites: From production to properties. Advanced drug delivery reviews, 107, 17-46.
  • Özsoy, N., and Sancak, E. (2024). Determining the mechanical properties of biomaterial-based economic thermoplastic composites reinforced with hemp fibres. Industria Textila, 75(4), 405-414.
  • Öztürk, S. (2005). The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites. Journal of Materials Science, 40(17), 4585-4592.
  • Plappert, D., Ganzenmüller, G. C., May, M., and Beisel, S. (2020). Mechanical properties of a unidirectional basalt-fiber/epoxy composite. Journal of Composites Science, 4(3), 101.
  • Saheb, D. N., and Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363.
  • Sang, L., Han, S., Li, Z., Yang, X., and Hou, W. (2019). Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 164, 629-639.
  • Sathishkumar, T. P., Naveen, J., and Satheeshkumar, S. (2014). Hybrid fiber reinforced polymer composites – a review. Journal of Reinforced Plastics and Composites, 33(5), 454-471.
  • Seçinti Klopf, H. (2025). Removal of non-cellulosic materials from hemp fiber under ultrasonication conditions and cetyl trimethyl ammonium chloride (CTAC) catalyst. Journal of Innovative Engineering and Natural Science, 5(1), 187-195.
  • Selvaraj, G., Kaliyamoorthy, R., and Kirubakaran, R. (2022). Mechanical, thermogravimetric, and dynamic mechanical analysis of basalt and flax fibers intertwined vinyl ester polymer composites. Polymer Composites, 43(4), 2196-2207.
  • Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S., Asim, M., and Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463.
  • Singha, K. (2012). A short review on basalt fiber. International Journal of Textile Science, 1(4), 19-28.
  • Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., and Bin, Y. (2013). Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method. Journal of Polymers and the Environment, 21(4), 1117-1127.
  • Soykan, U., and Kaya, S. (2023). Role of hemp fiber addition on thermal stability, heat insulation, air permeability and cellular structural features of rigid polyurethane foam. Cellular Polymers, 42(2), 88-104.
  • Tayfun, U., Arslan, Ç., and Doğan, M. (2023). Bazalt elyaf yüzeyindeki silan katmanının polilaktit kompozitlerine güçlendirme etkinliğinin değerlendirilmesi. Journal of Materials and Mechatronics: A, 4(1), 87-99.
  • Ucpinar, B., Sivrikaya, T., and Aytac, A. (2025). Sustainable hemp fiber reinforced polylactic acid/poly (butylene succinate) biocomposites: Assessing the effectiveness of MAH‐g‐PLA as a compatibilizer. Polymer Composites.
  • Yorseng, K., Rangappa, S. M., Ayyappan, V., Srisuk, R., and Siengchin, S. (2024). Bioepoxy based advanced lightweight hybrid composites from hemp fibers: towards greener production. Journal of Building Engineering, 86, 108808.
  • Zimniewska, M. (2022). Hemp Fibre Properties and Processing Target Textile: A Review. Materials (Basel), 15(5).
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Kaan Odabaş 0009-0005-5339-1580

Çağrıalp Arslan 0000-0002-5993-2983

Proje Numarası 1919B012304512
Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 13 Şubat 2025
Kabul Tarihi 3 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Odabaş, K., & Arslan, Ç. (2025). Mechanical and Thermal Characterization of Basalt and Hemp Fiber Reinforced Polylactide (PLA) Based Hybrid Bio-Composites. Karadeniz Fen Bilimleri Dergisi, 15(3), 1184-1195. https://doi.org/10.31466/kfbd.1638924