Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimized Dual Band Microstrip Antenna Design for 5G Applications

Yıl 2025, Cilt: 15 Sayı: 4, 1578 - 1595, 15.12.2025
https://doi.org/10.31466/kfbd.1677402

Öz

The rapid development of technology and changes in internet usage habits, there is a need for new generation communication systems to move to higher frequency bands. In this context, a single-element, dual-band, low-cost, low-production-sensitivity microstrip antenna design operating in the 28 / 38 GHz frequency bands for 5G and advanced communication technologies was carried out in this study. While designing the antenna, a low return loss, high gain antenna design is aimed, and the disadvantages of Millimeter Wave (MD), such as attenuation and diffraction, are minimized. Low-cost FR-4 material is used for the insulating layer, and the antenna is dimensioned for the center frequency bands using analytical methods on CST Studio Suite software. After the sizing process, each notch is subjected to separate parametric analyses, and the antenna is optimized based on return loss, gain, and efficiency parameters. The conventional antenna structure has been improved by adding upper and lower notches. As a result of parametric analyses, S11 values of -54.42 dB and -60.12 dB have been obtained at center frequencies, well above the literature average. In addition, the designed antenna provides a bandwidth of 3.72 / 4.94 GHz and a directivity of 7.3 dBi / 7.34 dBi at 28 / 38 GHz, respectively. In addition to the antenna design, the effect of certain gap structures on the patch on the S11 values is also presented in this study.

Kaynakça

  • Al-Falahy, N. and Alani, O.Y (2019). 5G ağ mimarisi için aday spektrum olarak milimetre dalga frekans bandı: Bir araştırma. Fiziksel İletişim, 32, 120-144.
  • Ashraf, N., Haraz, O. M., Ali, M. M. M., Ashraf, M. A., and Alshebili, S. A. S. (2016). Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication. AEU-International Journal of Electronics and Communications, 70(3), 257-264.
  • Ayalew, L. G., Asmare, F. M. (2022). Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications. Heliyon, 8(12).
  • Balanis, C. A. (2004) Antenna Theory: Analysis and Design; 3rd ed.; Wiley
  • Balanis, C. A. (2016). Antenna theory analysıs and desıgn thırd edıtıon. (Accessed: 8 July 2024).
  • Bhadravathi Ghouse, P. S., Kumar, P., Mane, P. R., Pathan, S., Ali, T., Boulogeorgos, A. A. A., & Anguera, J. (2024). Dual-Band Antenna at 28 and 38 GHz Using Internal Stubs and Slot Perturbations. Technologies, 12(6), 84.
  • Elabd, R. H., & Al-Gburi, A. J. A. (2024). Ultra-compact 4-port MIMO antenna with defected ground structure and SAR analysis for 28/38 GHz 5G mobile devices. Journal of Electromagnetic Waves and Applications, 38(9), 1000-1025.
  • Elkashlan, M., Duong, T. Q., and Chen, H. H. (2014). Millimeter-wave communications for 5G: fundamentals: Part I [Guest Editorial]. IEEE Communications Magazine, 52(9), 52-54.
  • Ghosh, S., and Sen, D. (2019). An Inclusive Survey on Array Antenna Design for Millimeter-Wave Communications. IEEE Access, 7, 83137–83161
  • Ghosal, S., De, A., Shubair, R. M., & Chakrabarty, A. (2019). Near-field radiation exposure control in slot-loaded microstrip antenna: A characteristic mode approach. Xiv preprint arXiv:1907.12127.
  • Giledi, M. K., and Khamoudi, B. M. (2023). Design of 28/38 GHz antenna array with improved gain and bandwidth. In 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA) (pp. 669-672). IEEE.
  • Hamdan, N., Kurnaz, Ç (2024). A novel dual-band four port mımo antenna design for 28/38 GHz millimeter-wave 5G applications. Balkan Journal of Electrical and Computer Engineering, 12(4), 273-281.
  • Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., and Hanzo, L. (2017). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys & Tutorials, 20(2), 870-913.
  • Icmez, B.O.; Kurnaz, C. High-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validation. Appl. Sci. 2025, 15, 3993. https://doi.org/10.3390/app15073993
  • Jiang, D., and Liu, G. (2016). An overview of 5G requirements. 5G Mobile Communications, 3-26.
  • Kamal, M. S., Islam, M. J., Uddin, M. J., and Imran, A. Z. M. (2018). Design of a tri-band microstrip patch antenna for 5G application. In 2018 İnternational Conference On Computer, Communication, Chemical, Material And Electronic Engineering . (pp. 1-3). IEEE.
  • Kar, S., Mishra, P., and Wang, K. C. (2021). 5G-IoT architecture for next generation smart systems. In 2021 IEEE 4th 5G World Forum (5GWF) (pp. 241-246). IEEE.
  • Khattak, M. A., Khattak, M. I., Owais, S. M., Khattak, A. A., and Sultan, A. (2020). Design and analysis of millimeter wave dielectric resonator antenna for 5G wireless communication systems. Progress In Electromagnetics Research C, 98, 239-255.
  • Kharkovsky, S., and Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-Overview and recent advances. IEEE Instrumentation & Measurement Magazine, 10(2), 26
  • Muhammad, S., Ya’u, I., Abubakar, A. S., and Yaro, A. S. (2019). Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Science World Journal, 14(1), 84-87.
  • Munir, M. E., Al Harbi, A. G., Kiani, S. H., Marey, M., Parchin, N. O., Khan, J., ... and Abd-Alhameed, R. A. (2022). A new mm-wave antenna array with wideband characteristics for next generation communication systems. Electronics, 11(10), 1560.
  • Nahas, M. (2022). Design of a high-gain dual-band LI-slotted microstrip patch antenna for 5G mobile communication systems. Journal of Radiation Research and Applied Sciences, 15(4), 100483.
  • Raj, T. et al. (2023) ‘Advances in MIMO antenna design for 5G: A comprehensive
  • Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., and Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE access, 1, 335-349.
  • Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., and Aryanfar, F. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106-113.
  • Salous, S., Degli Esposti, V., Fuschini, F., Thomae, R. S., Mueller, R., Dupleich, D., and Nekovee, M. (2016). Millimeter-Wave Propagation: Characterization and modeling toward fifth-generation systems.Wireless Corner. IEEE Antennas and Propagation Magazine, 58(6), 115-127.
  • Sarikaya, K., Hakanoğlu, B.G. and Keser, S. (2023). X ve Ku bandı için dikdörtgen ve simetrik l-şekilli yarıklara sahip çoklu bant yama antenlerde malzeme etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2), pp. 1094–1104.
  • Sabek, A. R., Ibrahim, A. A., and Ali, W. A. (2021). Dual-band millimeter wave microstrip patch antenna with StubResonators for 28/38 GHz applications. In Journal of Physics: Conference Series (Vol. 2128, No. 1, p. 012006). IOP Publishing.
  • Seker, C., Güneser, M.T. and Ozturk, T. (2018). A review of millimeter wave communication for 5G. 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5.
  • Shariff, B.G.P. et al. (2022). Array antennas for mmWave applications: A comprehensive review’, IEEE Access, 10, pp. 126728–126766.
  • Soliman, M. M., Hakim, M. L., Uddin, M. J., Faisal, M. M. A., and Rahaman, A. (2019). Optimization of design parameters of microstrip patch antenna at 28 GHz and 38 GHz for 5G applications. In 2019 IEEE International Conference on Telecommunications and Photonics (ICTP) (pp. 1-4). IEEE.
  • Sunthari, P. M., and Veeramani, R. (2017). Multiband microstrip patch antenna for 5G wireless applications using MIMO techniques. In 2017 First İnternational Conference On Recent Advances İn Aerospace Engineering (ICRAAE) (pp. 1-5). IEEE.
  • Tarpara, N. M., Rathwa, R. R., Kotak, N. A. (2018). Design of slotted microstrip patch antenna for 5G application. Int. Res. J. Eng. Technol, 5(4), 2827-2832.
  • Thakur, E., Gupta, A., Abdulhameed, M. K., Khaleel, A. D., and Abdullah Al-Gburi, A. J. (2024). microstrip antenna with two elements and defected ground structure for 5G mobile applications at 28/38 GHz. Progress In Electromagnetics Research C, 146.
  • Turgut, A., Engiz, B. K., Bayram, E. Z. (2023). Güven bölgesi çerçevesi algoritması ile 28/38 GHz anten tasarımı. In 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-4). IEEE.
  • Wang, X., Kong, L., Kong, F., Qiu, F., Xia, M., Arnon, S., and Chen, G. (2018). Millimeter wave communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(3), 1616-1653.
  • What are 5G frequency bands - RF Page. https://www.rfpage.com/what-are-5g-frequency-bands/. Zugegriffen: 23. October 2024.
  • Yoon, N., Seo, C. (2017). A 28-GHz wideband 2× 2 U-slot patch array antenna. Journal Of Electromagnetic Engineering and Science, 17(3), 133-137. https://doi.org/10.5515/JKIEES.2017.17.3.133

5G Uygulamaları için Optimize Edilmiş Çift Bantlı Mikroşerit Anten Tasarımı

Yıl 2025, Cilt: 15 Sayı: 4, 1578 - 1595, 15.12.2025
https://doi.org/10.31466/kfbd.1677402

Öz

Teknolojinin hızlı gelişimi ile internet kullanım alışkanlıklarının değişimine bağlı olarak, yeni nesil haberleşme sistemlerinin, daha yüksek frekans bantlarına çıkma ihtiyacı ortaya çıkmıştır. Bu kapsamda 5G ve ileri haberleşme teknolojileri için 28 / 38 GHz frekans bantlarında çalışan tek elemanlı, çift bantlı, maliyeti düşük, üretim hassasiyeti az olan bir mikroşerit anten tasarımı bu çalışmada sunulmuştur. Anten tasarımı gerçekleştirilirken geri dönüş kaybı düşük, yüksek kazançlı bir anten tasarımı amaçlanmış ve Milimetre Dalgaların (MD) zayıflama ve kırınım gibi dezavantajları en aza indirgenmiştir. Maliyeti düşük FR-4 malzemesi yalıtkan tabaka olarak seçilen anten, rezonans frekans bantları için slot konfigürasyon yöntemi ile CST Studio Suite Programı üzerinde boyutlandırılmıştır. Boyutlandırma işlemi sonrasında her bir ayrıt ayrı ayrı parametrik analizlere tabi tutularak, geri dönüş kaybı, kazanç ve verimlilik parametreleri üzerinden anten optimizasyonu sağlanmıştır. Klasik anten yapısı, üst ve alt boşluklar eklenerek geliştirilmiş ve parametrik analizler sonucu merkez frekanslarında literatür ortalamasının çok üzerinde -54,42 dB ve -60,12 dB gibi S11 değerleri elde edilmiştir. Ayrıca tasarımı gerçekleştirilen anten 28 / 38 GHz’ de sırasıyla 3,72 / 4,94 GHz bant genişliği ve 7,3 dBi / 7,34 dBi yönlülük değerleri sunmaktadır. Bu çalışmada anten tasarımına ek olarak yama üzerindeki belirli boşluk yapılarının, S11 değerleri üzerindeki etkisi de ortaya konulmaktadır.

Kaynakça

  • Al-Falahy, N. and Alani, O.Y (2019). 5G ağ mimarisi için aday spektrum olarak milimetre dalga frekans bandı: Bir araştırma. Fiziksel İletişim, 32, 120-144.
  • Ashraf, N., Haraz, O. M., Ali, M. M. M., Ashraf, M. A., and Alshebili, S. A. S. (2016). Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication. AEU-International Journal of Electronics and Communications, 70(3), 257-264.
  • Ayalew, L. G., Asmare, F. M. (2022). Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications. Heliyon, 8(12).
  • Balanis, C. A. (2004) Antenna Theory: Analysis and Design; 3rd ed.; Wiley
  • Balanis, C. A. (2016). Antenna theory analysıs and desıgn thırd edıtıon. (Accessed: 8 July 2024).
  • Bhadravathi Ghouse, P. S., Kumar, P., Mane, P. R., Pathan, S., Ali, T., Boulogeorgos, A. A. A., & Anguera, J. (2024). Dual-Band Antenna at 28 and 38 GHz Using Internal Stubs and Slot Perturbations. Technologies, 12(6), 84.
  • Elabd, R. H., & Al-Gburi, A. J. A. (2024). Ultra-compact 4-port MIMO antenna with defected ground structure and SAR analysis for 28/38 GHz 5G mobile devices. Journal of Electromagnetic Waves and Applications, 38(9), 1000-1025.
  • Elkashlan, M., Duong, T. Q., and Chen, H. H. (2014). Millimeter-wave communications for 5G: fundamentals: Part I [Guest Editorial]. IEEE Communications Magazine, 52(9), 52-54.
  • Ghosh, S., and Sen, D. (2019). An Inclusive Survey on Array Antenna Design for Millimeter-Wave Communications. IEEE Access, 7, 83137–83161
  • Ghosal, S., De, A., Shubair, R. M., & Chakrabarty, A. (2019). Near-field radiation exposure control in slot-loaded microstrip antenna: A characteristic mode approach. Xiv preprint arXiv:1907.12127.
  • Giledi, M. K., and Khamoudi, B. M. (2023). Design of 28/38 GHz antenna array with improved gain and bandwidth. In 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA) (pp. 669-672). IEEE.
  • Hamdan, N., Kurnaz, Ç (2024). A novel dual-band four port mımo antenna design for 28/38 GHz millimeter-wave 5G applications. Balkan Journal of Electrical and Computer Engineering, 12(4), 273-281.
  • Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., and Hanzo, L. (2017). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys & Tutorials, 20(2), 870-913.
  • Icmez, B.O.; Kurnaz, C. High-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validation. Appl. Sci. 2025, 15, 3993. https://doi.org/10.3390/app15073993
  • Jiang, D., and Liu, G. (2016). An overview of 5G requirements. 5G Mobile Communications, 3-26.
  • Kamal, M. S., Islam, M. J., Uddin, M. J., and Imran, A. Z. M. (2018). Design of a tri-band microstrip patch antenna for 5G application. In 2018 İnternational Conference On Computer, Communication, Chemical, Material And Electronic Engineering . (pp. 1-3). IEEE.
  • Kar, S., Mishra, P., and Wang, K. C. (2021). 5G-IoT architecture for next generation smart systems. In 2021 IEEE 4th 5G World Forum (5GWF) (pp. 241-246). IEEE.
  • Khattak, M. A., Khattak, M. I., Owais, S. M., Khattak, A. A., and Sultan, A. (2020). Design and analysis of millimeter wave dielectric resonator antenna for 5G wireless communication systems. Progress In Electromagnetics Research C, 98, 239-255.
  • Kharkovsky, S., and Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-Overview and recent advances. IEEE Instrumentation & Measurement Magazine, 10(2), 26
  • Muhammad, S., Ya’u, I., Abubakar, A. S., and Yaro, A. S. (2019). Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Science World Journal, 14(1), 84-87.
  • Munir, M. E., Al Harbi, A. G., Kiani, S. H., Marey, M., Parchin, N. O., Khan, J., ... and Abd-Alhameed, R. A. (2022). A new mm-wave antenna array with wideband characteristics for next generation communication systems. Electronics, 11(10), 1560.
  • Nahas, M. (2022). Design of a high-gain dual-band LI-slotted microstrip patch antenna for 5G mobile communication systems. Journal of Radiation Research and Applied Sciences, 15(4), 100483.
  • Raj, T. et al. (2023) ‘Advances in MIMO antenna design for 5G: A comprehensive
  • Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., and Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE access, 1, 335-349.
  • Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., and Aryanfar, F. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106-113.
  • Salous, S., Degli Esposti, V., Fuschini, F., Thomae, R. S., Mueller, R., Dupleich, D., and Nekovee, M. (2016). Millimeter-Wave Propagation: Characterization and modeling toward fifth-generation systems.Wireless Corner. IEEE Antennas and Propagation Magazine, 58(6), 115-127.
  • Sarikaya, K., Hakanoğlu, B.G. and Keser, S. (2023). X ve Ku bandı için dikdörtgen ve simetrik l-şekilli yarıklara sahip çoklu bant yama antenlerde malzeme etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2), pp. 1094–1104.
  • Sabek, A. R., Ibrahim, A. A., and Ali, W. A. (2021). Dual-band millimeter wave microstrip patch antenna with StubResonators for 28/38 GHz applications. In Journal of Physics: Conference Series (Vol. 2128, No. 1, p. 012006). IOP Publishing.
  • Seker, C., Güneser, M.T. and Ozturk, T. (2018). A review of millimeter wave communication for 5G. 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5.
  • Shariff, B.G.P. et al. (2022). Array antennas for mmWave applications: A comprehensive review’, IEEE Access, 10, pp. 126728–126766.
  • Soliman, M. M., Hakim, M. L., Uddin, M. J., Faisal, M. M. A., and Rahaman, A. (2019). Optimization of design parameters of microstrip patch antenna at 28 GHz and 38 GHz for 5G applications. In 2019 IEEE International Conference on Telecommunications and Photonics (ICTP) (pp. 1-4). IEEE.
  • Sunthari, P. M., and Veeramani, R. (2017). Multiband microstrip patch antenna for 5G wireless applications using MIMO techniques. In 2017 First İnternational Conference On Recent Advances İn Aerospace Engineering (ICRAAE) (pp. 1-5). IEEE.
  • Tarpara, N. M., Rathwa, R. R., Kotak, N. A. (2018). Design of slotted microstrip patch antenna for 5G application. Int. Res. J. Eng. Technol, 5(4), 2827-2832.
  • Thakur, E., Gupta, A., Abdulhameed, M. K., Khaleel, A. D., and Abdullah Al-Gburi, A. J. (2024). microstrip antenna with two elements and defected ground structure for 5G mobile applications at 28/38 GHz. Progress In Electromagnetics Research C, 146.
  • Turgut, A., Engiz, B. K., Bayram, E. Z. (2023). Güven bölgesi çerçevesi algoritması ile 28/38 GHz anten tasarımı. In 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-4). IEEE.
  • Wang, X., Kong, L., Kong, F., Qiu, F., Xia, M., Arnon, S., and Chen, G. (2018). Millimeter wave communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(3), 1616-1653.
  • What are 5G frequency bands - RF Page. https://www.rfpage.com/what-are-5g-frequency-bands/. Zugegriffen: 23. October 2024.
  • Yoon, N., Seo, C. (2017). A 28-GHz wideband 2× 2 U-slot patch array antenna. Journal Of Electromagnetic Engineering and Science, 17(3), 133-137. https://doi.org/10.5515/JKIEES.2017.17.3.133
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antenler ve Yayılma, Kablosuz Haberleşme Sistemleri ve Teknolojileri (Mikro Dalga ve Milimetrik Dalga dahil)
Bölüm Araştırma Makalesi
Yazarlar

Bilal Okan İçmez 0000-0003-0438-5756

Çetin Kurnaz 0000-0003-3436-899X

Gönderilme Tarihi 16 Nisan 2025
Kabul Tarihi 25 Ağustos 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA İçmez, B. O., & Kurnaz, Ç. (2025). 5G Uygulamaları için Optimize Edilmiş Çift Bantlı Mikroşerit Anten Tasarımı. Karadeniz Fen Bilimleri Dergisi, 15(4), 1578-1595. https://doi.org/10.31466/kfbd.1677402