Araştırma Makalesi
BibTex RIS Kaynak Göster

Yaşam Döngüsü Değerlendirmesinde Bir Etki Kategorisi Olarak Abiyotik Kaynak Tükenmesi: Kavramsal Bir Derleme

Yıl 2025, Cilt: 15 Sayı: 4, 1713 - 1729, 15.12.2025
https://doi.org/10.31466/kfbd.1760000

Öz

Yaşam döngüsü değerlendirmesi (YDD), ürün ve hizmetlerin çevresel etkilerini bütüncül bir yaklaşımla analiz etmeye olanak tanıyan önemli bir yöntemdir. YDD’nin etki değerlendirme aşamasında yer alan abiyotik kaynak tükenmesi kategorisi, yenilenemeyen doğal kaynakların sınırlılığına dikkat çekerek sürdürülebilir kaynak yönetimi açısından kritik bilgiler sunar. Ancak mevcut çalışmalar, bu kategorinin çoğu zaman ikincil önemde bir çıktı olarak raporlandığını, nadiren yorumlandığını ve karar destek süreçlerine entegre edilmediğini ortaya koymaktadır. Ayrıca karakterizasyon modelleri arasındaki farklılıklar, yerel veri eksiklikleri ve kritik hammaddelere yönelik vaka çalışmalarının yetersizliği bu kategorinin güvenilirliğini ve uygulanabilirliğini sınırlamaktadır. Bu derleme çalışması, abiyotik tükenme kategorisinin kavramsal çerçevesini ve metodolojik altyapısını inceleyerek mevcut sınırlılıkları ve araştırma boşluklarını ortaya koymaktadır. Çalışma, model harmonizasyonu, yerel veri tabanlarının geliştirilmesi, kritik hammadde odaklı analizlerin artırılması ve politika entegrasyonunun güçlendirilmesi gibi öneriler sunarak bu kategorinin yalnızca teknik bir gösterge olmaktan çıkarılıp, kaynak güvenliği ve sürdürülebilirlik stratejileri için etkin bir karar destek aracı hâline gelmesine katkı sağlamayı hedeflemektedir.

Etik Beyan

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Destekleyen Kurum

Ondokuz Mayıs üniversitesi

Teşekkür

Bu çalışma, Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından sağlanan destekle (Proje No: BAP01-2024-5265) gerçekleştirilmiştir. Sağladıkları katkılardan dolayı teşekkür ederiz.

Kaynakça

  • Çolak, A., Laratte, B., Elevli, B., & Çoruh, S. (2022). Abiotic Depletion of Boron: An Update Characterization Factors for CML 2002 and ReCiPe. Minerals, 12(4), Article 4. https://doi.org/10.3390/min12040435
  • De Bruijn, H., Van Duin, R., Huijbregts, M. A. J., Guinee, J. B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Van Oers, L., Wegener Sleeswijk, A., Suh, S., & Udo De Haes, H. A. (Ed.). (2002). Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards (C. 7). Springer Netherlands. https://doi.org/10.1007/0-306-48055-7
  • De Bruijn, H., van Duin, R., Huijbregts, M. A. J., Guinee, J. B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., & Udo de Haes, H. A. (2002). Impact assessment. Içinde H. de Bruijn, R. van Duin, M. A. J. Huijbregts, J. B. Guinee, M. Gorree, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. van Oers, A. Wegener Sleeswijk, S. Suh, & H. A. Udo de Haes (Ed.), Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards (ss. 161-388). Springer Netherlands. https://doi.org/10.1007/0-306-48055-7_14
  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010a). Towards Life Cycle Sustainability Assessment. Sustainability, 2(10), Article 10. https://doi.org/10.3390/su2103309
  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010b). Towards Life Cycle Sustainability Assessment. Sustainability, 2(10), Article 10. https://doi.org/10.3390/su2103309
  • Guinée, J. B., & Heijungs, R. (1995). A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environmental Toxicology and Chemistry, 14(5), 917-925. https://doi.org/10.1002/etc.5620140525
  • Güneralp, S., & Yay, A. S. E. (2019). Ambalaj Atıklarının Çevresel Etkilerinin Yaşam Döngüsü Analizi İle Belirlenmesi: Mühendislik Fakültesi Örneği. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), Article 2. https://doi.org/10.28979/comufbed.560116
  • Hackenhaar, I., Alvarenga, R. A. F., Bachmann, T. M., Riva, F., Horn, R., Graf, R., & Dewulf, J. (2022a). A critical review of criticality methods for a European Life Cycle Sustainability Assessment. Procedia CIRP, 105, 428-433. https://doi.org/10.1016/j.procir.2022.02.071
  • Hackenhaar, I., Alvarenga, R. A. F., Bachmann, T. M., Riva, F., Horn, R., Graf, R., & Dewulf, J. (2022b). A critical review of criticality methods for a European Life Cycle Sustainability Assessment. Procedia CIRP, 105, 428-433. https://doi.org/10.1016/j.procir.2022.02.071
  • HAIDERY, J. A. (2020, Haziran 15). Bir su temin sisteminin çevresel sürdürülebilirliğinin yaşam döngüsü ile değerlendirilmesi | Tezler | Tezara. https://tezara.org/theses/632792?utm_source=chatgpt.com
  • Häkkinen, T., & Mäkelä, K. (1996). Environmental adaption of concrete: Environmental impact of concrete and asphalt pavements. VTT Technical Research Centre of Finland.
  • Häkkinen, T., & Vares, S. (2010). Environmental impacts of disposable cups with special focus on the effect of material choices and end of life. Journal of Cleaner Production, 18(14), 1458-1463.
  • Hauschild, M., Rosenbaum, R. K., & Olsen, S. (Ed.). (2018). Life Cycle Assessment, Orijinal metin: Theory and Practice. Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3
  • Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-y
  • Klinglmair, M., Sala, S., & Brandão, M. (2013). Assessing resource depletion in LCA: A review of methods and methodological issues. The International Journal of Life Cycle Assessment, 19. https://doi.org/10.1007/s11367-013-0650-9
  • Mancini, L., Ardente, F., Goralczyk, M., Pennington, D., & Sala, S. (2013). Life Cycle Assessment and criticality of raw materials: Relationship and potential synergies. JRC Publications Repository. https://publications.jrc.ec.europa.eu/repository/handle/JRC80606
  • Margni, M., & Curran, M. A. (2012). Life Cycle Impact Assessment. Içinde Life Cycle Assessment Handbook (ss. 67-103). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118528372.ch4
  • Mermer, C., & Şengül, H. (2020). Addressing potential resource scarcity for boron mineral: A system dynamics perspective. Journal of Cleaner Production, 270, 122192. https://doi.org/10.1016/j.jclepro.2020.122192
  • Oers, L., & Guinée, J. (2016). The Abiotic Depletion Potential: Background, Updates, and Future. Resources, 5. https://doi.org/10.3390/resources5010016
  • Owsianiak, M., van Oers, L., Drielsma, J., Laurent, A., & Hauschild, M. Z. (2022). Identification of dissipative emissions for improved assessment of metal resources in life cycle assessment. Journal of Industrial Ecology, 26(2), 406-420. https://doi.org/10.1111/jiec.13209
  • Pauliuk. (2021). A new framework for studying the resource efficiency–climate change (RECC) nexus—Pauliuk—2021—Journal of Industrial Ecology—Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jiec.13023?utm_source=chatgpt.com
  • Schulze, R., Guinée, J., van Oers, L., Alvarenga, R., Dewulf, J., & Drielsma, J. (2020). Abiotic resource use in life cycle impact assessment—Part II – Linking perspectives and modelling concepts. Resources, Conservation and Recycling, 155, 104595. https://doi.org/10.1016/j.resconrec.2019.104595
  • Sonnemann, G., Gemechu, E. D., Adibi, N., De Bruille, V., & Bulle, C. (2015). From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. Journal of Cleaner Production, 94, 20-34. https://doi.org/10.1016/j.jclepro.2015.01.082
  • Tisserant, A., Pauliuk, S., Merciai, S., Schmidt, J., Fry, J., Wood, R., & Tukker, A. (2017). Solid Waste and the Circular Economy: A Global Analysis of Waste Treatment and Waste Footprints. Journal of Industrial Ecology, 21(3), 628-640. https://doi.org/10.1111/jiec.12562
  • USGS. (2021). MINERAL COMMODITY SUMMARIES. U.S. Geological Survey. https://store.usgs.gov/.
  • Van Oers, L., & Guinée, J. (2016). The Abiotic Depletion Potential: Background, Updates, and Future. Resources, 5(1), Article 1. https://doi.org/10.3390/resources5010016
  • Verones, F., Hellweg, S., Antón, A., Azevedo, L. B., Chaudhary, A., Cosme, N., Cucurachi, S., de Baan, L., Dong, Y., Fantke, P., Golsteijn, L., Hauschild, M., Heijungs, R., Jolliet, O., Juraske, R., Larsen, H., Laurent, A., Mutel, C. L., Margni, M., … Huijbregts, M. A. J. (2020). LC-IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 24(6), 1201-1219. https://doi.org/10.1111/jiec.13018
  • Vidal Legaz, B., Maia De Souza, D., Teixeira, R. F. M., Antón, A., Putman, B., & Sala, S. (2017). Soil quality, properties, and functions in life cycle assessment: An evaluation of models. Journal of Cleaner Production, 140, 502-515. https://doi.org/10.1016/j.jclepro.2016.05.077
  • Vidal, R., Alberola-Borràs, J.-A., & Mora-Seró, I. (2020). Abiotic depletion and the potential risk to the supply of cesium. Resources Policy, 68, 101792. https://doi.org/10.1016/j.resourpol.2020.101792
  • Villagrán, E., Romero-Perdomo, F., Numa-Vergel, S., Galindo-Pacheco, J. R., & Salinas-Velandia, D. A. (2024). Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae, 10(1), Article 1. https://doi.org/10.3390/horticulturae10010015
  • WCED, F. O. for S. D. (1987). WCED. https://www.are.admin.ch/are/en/home/medien-und-publikationen/publikationen/nachhaltige-entwicklung/brundtland-report.html
  • Word Bank Group. (2023). Word Bank Group. https://openknowledge.worldbank.org/entities/publication/4dd08d0c-ab51-4955-a464-35a95201a5eb
  • Xue, M., & Xu, Z. (2017). Application of Life Cycle Assessment on Electronic Waste Management: A Review. Environmental Management, 59(4), 693-707. https://doi.org/10.1007/s00267-016-0812-1

Abiotic Resource Depletion as an Impact Category in Life Cycle Assessment: A Conceptual Review

Yıl 2025, Cilt: 15 Sayı: 4, 1713 - 1729, 15.12.2025
https://doi.org/10.31466/kfbd.1760000

Öz

Life Cycle Assessment (LCA) is a widely used method that enables a comprehensive evaluation of the environmental impacts of products and services. The abiotic resource depletion category, included in the impact assessment phase of LCA, highlights the finiteness of non-renewable natural resources and provides critical insights for sustainable resource management. However, existing studies show that this category is often reported as a secondary result, rarely interpreted, and insufficiently integrated into decision-making processes. Furthermore, inconsistencies between characterization models, a lack of local data, and the limited number of case studies focusing on critical raw materials restrict the reliability and applicability of this category. This review examines the conceptual framework and methodological background of the abiotic resource depletion category, revealing current limitations and research gaps. It aims to contribute to transforming this category from a purely technical indicator into an effective decision-support tool for resource security and sustainability strategies by proposing model harmonization, developing local databases, increasing case studies on critical raw materials, and strengthening integration with policy processes.

Kaynakça

  • Çolak, A., Laratte, B., Elevli, B., & Çoruh, S. (2022). Abiotic Depletion of Boron: An Update Characterization Factors for CML 2002 and ReCiPe. Minerals, 12(4), Article 4. https://doi.org/10.3390/min12040435
  • De Bruijn, H., Van Duin, R., Huijbregts, M. A. J., Guinee, J. B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Van Oers, L., Wegener Sleeswijk, A., Suh, S., & Udo De Haes, H. A. (Ed.). (2002). Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards (C. 7). Springer Netherlands. https://doi.org/10.1007/0-306-48055-7
  • De Bruijn, H., van Duin, R., Huijbregts, M. A. J., Guinee, J. B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., & Udo de Haes, H. A. (2002). Impact assessment. Içinde H. de Bruijn, R. van Duin, M. A. J. Huijbregts, J. B. Guinee, M. Gorree, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. van Oers, A. Wegener Sleeswijk, S. Suh, & H. A. Udo de Haes (Ed.), Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards (ss. 161-388). Springer Netherlands. https://doi.org/10.1007/0-306-48055-7_14
  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010a). Towards Life Cycle Sustainability Assessment. Sustainability, 2(10), Article 10. https://doi.org/10.3390/su2103309
  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010b). Towards Life Cycle Sustainability Assessment. Sustainability, 2(10), Article 10. https://doi.org/10.3390/su2103309
  • Guinée, J. B., & Heijungs, R. (1995). A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environmental Toxicology and Chemistry, 14(5), 917-925. https://doi.org/10.1002/etc.5620140525
  • Güneralp, S., & Yay, A. S. E. (2019). Ambalaj Atıklarının Çevresel Etkilerinin Yaşam Döngüsü Analizi İle Belirlenmesi: Mühendislik Fakültesi Örneği. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), Article 2. https://doi.org/10.28979/comufbed.560116
  • Hackenhaar, I., Alvarenga, R. A. F., Bachmann, T. M., Riva, F., Horn, R., Graf, R., & Dewulf, J. (2022a). A critical review of criticality methods for a European Life Cycle Sustainability Assessment. Procedia CIRP, 105, 428-433. https://doi.org/10.1016/j.procir.2022.02.071
  • Hackenhaar, I., Alvarenga, R. A. F., Bachmann, T. M., Riva, F., Horn, R., Graf, R., & Dewulf, J. (2022b). A critical review of criticality methods for a European Life Cycle Sustainability Assessment. Procedia CIRP, 105, 428-433. https://doi.org/10.1016/j.procir.2022.02.071
  • HAIDERY, J. A. (2020, Haziran 15). Bir su temin sisteminin çevresel sürdürülebilirliğinin yaşam döngüsü ile değerlendirilmesi | Tezler | Tezara. https://tezara.org/theses/632792?utm_source=chatgpt.com
  • Häkkinen, T., & Mäkelä, K. (1996). Environmental adaption of concrete: Environmental impact of concrete and asphalt pavements. VTT Technical Research Centre of Finland.
  • Häkkinen, T., & Vares, S. (2010). Environmental impacts of disposable cups with special focus on the effect of material choices and end of life. Journal of Cleaner Production, 18(14), 1458-1463.
  • Hauschild, M., Rosenbaum, R. K., & Olsen, S. (Ed.). (2018). Life Cycle Assessment, Orijinal metin: Theory and Practice. Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3
  • Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-y
  • Klinglmair, M., Sala, S., & Brandão, M. (2013). Assessing resource depletion in LCA: A review of methods and methodological issues. The International Journal of Life Cycle Assessment, 19. https://doi.org/10.1007/s11367-013-0650-9
  • Mancini, L., Ardente, F., Goralczyk, M., Pennington, D., & Sala, S. (2013). Life Cycle Assessment and criticality of raw materials: Relationship and potential synergies. JRC Publications Repository. https://publications.jrc.ec.europa.eu/repository/handle/JRC80606
  • Margni, M., & Curran, M. A. (2012). Life Cycle Impact Assessment. Içinde Life Cycle Assessment Handbook (ss. 67-103). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118528372.ch4
  • Mermer, C., & Şengül, H. (2020). Addressing potential resource scarcity for boron mineral: A system dynamics perspective. Journal of Cleaner Production, 270, 122192. https://doi.org/10.1016/j.jclepro.2020.122192
  • Oers, L., & Guinée, J. (2016). The Abiotic Depletion Potential: Background, Updates, and Future. Resources, 5. https://doi.org/10.3390/resources5010016
  • Owsianiak, M., van Oers, L., Drielsma, J., Laurent, A., & Hauschild, M. Z. (2022). Identification of dissipative emissions for improved assessment of metal resources in life cycle assessment. Journal of Industrial Ecology, 26(2), 406-420. https://doi.org/10.1111/jiec.13209
  • Pauliuk. (2021). A new framework for studying the resource efficiency–climate change (RECC) nexus—Pauliuk—2021—Journal of Industrial Ecology—Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jiec.13023?utm_source=chatgpt.com
  • Schulze, R., Guinée, J., van Oers, L., Alvarenga, R., Dewulf, J., & Drielsma, J. (2020). Abiotic resource use in life cycle impact assessment—Part II – Linking perspectives and modelling concepts. Resources, Conservation and Recycling, 155, 104595. https://doi.org/10.1016/j.resconrec.2019.104595
  • Sonnemann, G., Gemechu, E. D., Adibi, N., De Bruille, V., & Bulle, C. (2015). From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. Journal of Cleaner Production, 94, 20-34. https://doi.org/10.1016/j.jclepro.2015.01.082
  • Tisserant, A., Pauliuk, S., Merciai, S., Schmidt, J., Fry, J., Wood, R., & Tukker, A. (2017). Solid Waste and the Circular Economy: A Global Analysis of Waste Treatment and Waste Footprints. Journal of Industrial Ecology, 21(3), 628-640. https://doi.org/10.1111/jiec.12562
  • USGS. (2021). MINERAL COMMODITY SUMMARIES. U.S. Geological Survey. https://store.usgs.gov/.
  • Van Oers, L., & Guinée, J. (2016). The Abiotic Depletion Potential: Background, Updates, and Future. Resources, 5(1), Article 1. https://doi.org/10.3390/resources5010016
  • Verones, F., Hellweg, S., Antón, A., Azevedo, L. B., Chaudhary, A., Cosme, N., Cucurachi, S., de Baan, L., Dong, Y., Fantke, P., Golsteijn, L., Hauschild, M., Heijungs, R., Jolliet, O., Juraske, R., Larsen, H., Laurent, A., Mutel, C. L., Margni, M., … Huijbregts, M. A. J. (2020). LC-IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 24(6), 1201-1219. https://doi.org/10.1111/jiec.13018
  • Vidal Legaz, B., Maia De Souza, D., Teixeira, R. F. M., Antón, A., Putman, B., & Sala, S. (2017). Soil quality, properties, and functions in life cycle assessment: An evaluation of models. Journal of Cleaner Production, 140, 502-515. https://doi.org/10.1016/j.jclepro.2016.05.077
  • Vidal, R., Alberola-Borràs, J.-A., & Mora-Seró, I. (2020). Abiotic depletion and the potential risk to the supply of cesium. Resources Policy, 68, 101792. https://doi.org/10.1016/j.resourpol.2020.101792
  • Villagrán, E., Romero-Perdomo, F., Numa-Vergel, S., Galindo-Pacheco, J. R., & Salinas-Velandia, D. A. (2024). Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae, 10(1), Article 1. https://doi.org/10.3390/horticulturae10010015
  • WCED, F. O. for S. D. (1987). WCED. https://www.are.admin.ch/are/en/home/medien-und-publikationen/publikationen/nachhaltige-entwicklung/brundtland-report.html
  • Word Bank Group. (2023). Word Bank Group. https://openknowledge.worldbank.org/entities/publication/4dd08d0c-ab51-4955-a464-35a95201a5eb
  • Xue, M., & Xu, Z. (2017). Application of Life Cycle Assessment on Electronic Waste Management: A Review. Environmental Management, 59(4), 693-707. https://doi.org/10.1007/s00267-016-0812-1
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel Olarak Sürdürülebilir Mühendislik, Yaşam Döngüsü Değerlendirmesi ve Endüstriyel Ekoloji
Bölüm Araştırma Makalesi
Yazarlar

Ayşenur Çolak 0000-0002-5648-7618

Semra Çoruh 0000-0002-8306-1890

Gönderilme Tarihi 7 Ağustos 2025
Kabul Tarihi 1 Ekim 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Çolak, A., & Çoruh, S. (2025). Yaşam Döngüsü Değerlendirmesinde Bir Etki Kategorisi Olarak Abiyotik Kaynak Tükenmesi: Kavramsal Bir Derleme. Karadeniz Fen Bilimleri Dergisi, 15(4), 1713-1729. https://doi.org/10.31466/kfbd.1760000