In this study, it was first shown that the intersection of a countably large number of ν-measurable sets and their union under some conditions are also ν-measurable. Besides , the relevant theorems were obtained, by giving non-Newtonian set definitions ■(ν@)G_δ and ■(ν@)F_σ. In addition, the Cantor perfect set was defined in a non-Newtonian sense, and the Cantor set, which is an important example in measure theory being uncountable but has zero measure, was generalized in a non-Newtonian sense.
Bu çalışmada, ilk olarak sayılabilir çoklukta ν-ölçülebilir kümenin kesişiminin ve bazı koşullar altında birleşiminin de ν-ölçülebilir olduğu gösterildi. Bunun yanında Newtonyen olmayan ■(ν@)G_δ ve ■(ν@)F_σ küme tanımları verilerek, ilgili teoremler elde edildi. Ayrıca Newtonyen olmayan anlamda Cantor mükemmel küme tanımlandı ve ölçü teorisinde önemli örneklerden olan sayılamaz fakat ölçüsü sıfır olan Cantor kümesi Newtonyen olmayan anlamda genelleştirildi.
Birincil Dil | Türkçe |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 15 Mart 2024 |
Gönderilme Tarihi | 15 Aralık 2023 |
Kabul Tarihi | 5 Mart 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 14 Sayı: 1 |
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.