Araştırma Makalesi
BibTex RIS Kaynak Göster

A Note on Non-Newtonian Measurable Sets

Yıl 2024, Cilt: 14 Sayı: 1, 295 - 303, 15.03.2024
https://doi.org/10.31466/kfbd.1405273

Öz

In this study, it was first shown that the intersection of a countably large number of ν-measurable sets and their union under some conditions are also ν-measurable. Besides , the relevant theorems were obtained, by giving non-Newtonian set definitions ■(ν@)G_δ and ■(ν@)F_σ. In addition, the Cantor perfect set was defined in a non-Newtonian sense, and the Cantor set, which is an important example in measure theory being uncountable but has zero measure, was generalized in a non-Newtonian sense.

Kaynakça

  • Çakmak, A. F., & Başar, F. (2012). Some new results on sequence spaces with respect to non-Newtonian calculus. Journal of Inequalities and Applications(228), 1-12.
  • Demir, S. (2019). Reel Sayılarda Newtonyen Olmayan Lebesgue Ölçüsünün Bazı Özellikleri. Giresun: Giresun Üniversitesi Fen Bilimleri Enstitüsü.
  • Duyar, C., & Oğur, O. (2017). A Note On Topology Of Non-Newtonian Real Numbers. Journal of Mathematics(13), 11-14.
  • Duyar, C., & Sağır, B. (2017). Non-Newtonian Comment of Lebesgue Measure in Real Numbers. Journal of Mathematics, 1-4.
  • Grossman, M., & Robert, K. (1972). Non-Newtonian Calculus. Pigeon Cove(Lowell Technological Institue).
  • Grossmann, M. (1979). The first nonlinear system of differential and integral calculus. Galileo Institute.
  • Grossmann, M. (1983). Bigeometric Calculus: A System with a Scale-Free Deriative. Archimedes Foundation, Rockport Massachussets.
  • Oğur, O., & Demir, S. (2019). Newtonyen Olmayan Lebesgue Ölçüsü. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 134-139.
  • Oğur, O., & Demir, S. (2019). On non-Newtonian measure for α−closed sets. New Trends in Mathematical Sciences, 7(2), 202-207.

Newtonyen Olmayan Ölçülebilir Kümeler Üzerine Bir Not

Yıl 2024, Cilt: 14 Sayı: 1, 295 - 303, 15.03.2024
https://doi.org/10.31466/kfbd.1405273

Öz

Bu çalışmada, ilk olarak sayılabilir çoklukta ν-ölçülebilir kümenin kesişiminin ve bazı koşullar altında birleşiminin de ν-ölçülebilir olduğu gösterildi. Bunun yanında Newtonyen olmayan ■(ν@)G_δ ve ■(ν@)F_σ küme tanımları verilerek, ilgili teoremler elde edildi. Ayrıca Newtonyen olmayan anlamda Cantor mükemmel küme tanımlandı ve ölçü teorisinde önemli örneklerden olan sayılamaz fakat ölçüsü sıfır olan Cantor kümesi Newtonyen olmayan anlamda genelleştirildi.

Kaynakça

  • Çakmak, A. F., & Başar, F. (2012). Some new results on sequence spaces with respect to non-Newtonian calculus. Journal of Inequalities and Applications(228), 1-12.
  • Demir, S. (2019). Reel Sayılarda Newtonyen Olmayan Lebesgue Ölçüsünün Bazı Özellikleri. Giresun: Giresun Üniversitesi Fen Bilimleri Enstitüsü.
  • Duyar, C., & Oğur, O. (2017). A Note On Topology Of Non-Newtonian Real Numbers. Journal of Mathematics(13), 11-14.
  • Duyar, C., & Sağır, B. (2017). Non-Newtonian Comment of Lebesgue Measure in Real Numbers. Journal of Mathematics, 1-4.
  • Grossman, M., & Robert, K. (1972). Non-Newtonian Calculus. Pigeon Cove(Lowell Technological Institue).
  • Grossmann, M. (1979). The first nonlinear system of differential and integral calculus. Galileo Institute.
  • Grossmann, M. (1983). Bigeometric Calculus: A System with a Scale-Free Deriative. Archimedes Foundation, Rockport Massachussets.
  • Oğur, O., & Demir, S. (2019). Newtonyen Olmayan Lebesgue Ölçüsü. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 134-139.
  • Oğur, O., & Demir, S. (2019). On non-Newtonian measure for α−closed sets. New Trends in Mathematical Sciences, 7(2), 202-207.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Makaleler
Yazarlar

Oğuz Oğur 0000-0002-3206-5330

Zekiye Güneş Bu kişi benim 0000-0002-0945-0580

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 15 Aralık 2023
Kabul Tarihi 5 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Oğur, O., & Güneş, Z. (2024). Newtonyen Olmayan Ölçülebilir Kümeler Üzerine Bir Not. Karadeniz Fen Bilimleri Dergisi, 14(1), 295-303. https://doi.org/10.31466/kfbd.1405273