Araştırma Makalesi
BibTex RIS Kaynak Göster

Tekrarlamalı Gauss-Seidel Algoritması ile EKG Gürültüsünün Temizlenmesi

Yıl 2024, Cilt: 14 Sayı: 4, 2115 - 2127, 15.12.2024
https://doi.org/10.31466/kfbd.1524020

Öz

Elektrokardiyogram (EKG) sinyalleri kalp fonksiyonları ve bazı kalp hastalıkları hakkında bilgi sağlar. Ancak ölçüm ve iletim sırasında EKG dalga formlarını bozan çeşitli girişimler, hatalı analiz ve tanıya neden olabilir. Bu nedenle, bu istenmeyen bozucu sinyallerin ortadan kaldırılması ve gürültülü EKG kayıtlarından kabul edilebilir bir EKG sinyalinin çıkarılması gerekmektedir. Araştırmacılar, EKG kayıtlarına bulaşan istenmeyen gürültü ve girişimlerin üstesinden gelmek için çeşitli yöntemler geliştirdiler. Uyarlanabilir filtreleme teknikleri, istenmeyen sinyallerin zamanla değişen doğasına uyum sağlama mekanizmaları nedeniyle bilim adamlarının dikkatini çekmiştir. Sunulan uyarlanabilir filtreleme algoritmalarının çoğu eğim tabanlıdır ve basit gerçekleme avantajına sahiptir, ancak bozucu sinyallerden olumsuz etkilenirler; örneğin, yavaş yakınsama hızlarına ve zayıf kalıcı-durum özelliklerine sahip olabilirler. En küçük kareler tabanlı algoritmalar, daha hızlı yakınsama ve daha iyi kalıcı-durum yanıtları nedeniyle avantajlıdır. Bu makalede, gürültülü EKG kayıtlarından kabul edilebilir bir dalga şekli elde etmek için, Tekrarlamalı En Küçük Kareler (RLS) algoritmasına göre daha az hesaplama karmaşıklığına sahip, en küçük kareler tabanlı alternatif bir yöntem olan Tekrarlamalı Gauss-Seidel (RGS) algoritması sunulmaktadır. RGS algoritmasının gürültü temizleme performansı araştırılmış ve yaygın olarak kullanılan eğim tabanlı algoritmalar ve popüler RLS algoritması ile karşılaştırılmıştır.

Kaynakça

  • Berkaya, S. K., Uysal, A. K., Gunal, E. S., Ergin, S., Gunal, S., and Gulmezoglu, M. B. (2018). A survey on ECG analysis. Biomedical Signal Processing and Control, 43, 216-235. http://dx.doi.org/10.1016/j.bspc.2018.03.003
  • Bose, T. (2004). Digital signal and image processing. Hoboken, NJ: John Wiley & Sons.
  • Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L., and Raghuvanshi, D. K. (2020). Review of noise removal techniques in ECG signals. IET Signal Processing, 14(9), 569-590. http://dx.doi.org/10.1049/iet-spr.2020.0104
  • Clifford, G. D., Azuaje, F., and McSharry, P. E. (Eds.). (2006). Advanced methods and tools for ECG data analysis. Norwood, MA: Artech House.
  • Faiz, M. M. U., and Kale, I. (2022). Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers. Array, 14, 1-9. http://dx.doi.org/10.1016/j.array.2022.100133
  • Gowri, T., Kumar, P. R., and Reddy, D. V. R. K. (2014). An efficient variable step size least mean square adaptive algorithm used to enhance the quality of electrocardiogram signal. In S. Thampi, A. Gelbukh, and J. Mukhopadhyay (Ed.), Advances in signal processing and intelligent recognition systems (pp. 463-475). Switzerland: Springer International Publishing.
  • Gowri, T., Kumar, P. R., Reddy, D. V. R. K., and Rahman, M. Z. U. (2015). Denoising artifacts from cardiac signal using normalized variable step size LMS algorithm. Sensors & Transducers Journal, 187(4), 138-145.
  • Gowri, T., Kumar, P. R., and Reddy, D. V. R. K. (2017). Performance of variable step size LMS adaptive algorithm for the removal of artifacts from electrocardiogram using DSP processor. International Conference on Intelligent Sustainable Systems (ICISS) (pp. 342-346). Palladam, India.
  • Hatun, M., and Koçal, O. H. (2012). Recursive Gauss-Seidel algorithm for direct self‐tuning control. International Journal of Adaptive Control and Signal Processing, 26(5), 435-450. http://dx.doi.org/10.1002/acs.1296
  • Haykin, S. (2002). Adaptive filter theory (4th ed.). Upper Saddle River, NJ: Prentice-Hall.
  • Karthik, G. V. S., and Sugumar, S. J. (2013). High resolution cardiac signal extraction using novel adaptive noise cancelers. International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s) (pp. 564-568). Kottayam, India.
  • Koçal, O. H. (1998). A new approach to least-squares adaptive filtering. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS’98) (pp. 261-264). Monterey, CA, USA.
  • Mabey, G. W., Gunther, J., and Bose, T. (2004). A Euclidean direction based algorithm for blind source separation using a natural gradient. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’04) (pp. 561-564). Montreal, QC, Canada.
  • Malghan, P. G., and Hota, M. K. (2020). A review on ECG filtering techniques for rhythm analysis. Research on Biomedical Engineering, 36(2020), 171-186. http://dx.doi.org/10.1007/s42600-020-00057-9
  • Mir, H. Y., and Singh, O. (2021). ECG denoising and feature extraction techniques - a review. Journal of Medical Engineering & Technology, 45(8), 672-684. http://dx.doi.org/10.1080/03091902.2021.1955032
  • Moody, G., and Mark, R. (2005). MIT-BIH Arrhythmia Database, v1.0.0. Retrieved from https://physionet.org/content/mitdb/1.0.0/
  • Moody, G., and Mark, R. (1999). MIT-BIH Noise Stress Test Database, v1.0.0. Retrieved from https://physionet.org/content/nstdb/1.0.0/
  • Rahman, M. Z. U., Shaik, R. A., and Reddy, D. V. R. K. (2009). Noise cancellation in ECG signals using computationally simplified adaptive filtering techniques: application to biotelemetry. Signal Processing: An International Journal (SPIJ), 3(5), 120-131.
  • Rahman, M. Z. U., Shaik, R. A., and Reddy, D. V. R. K. (2011). Efficient sign based normalized adaptive filtering techniques for cancelation of artifacts in ECG signals: application to wireless biotelemetry. Signal Processing, 91(2) 225-239. http://dx.doi.org/10.1016/j.sigpro.2010.07.002
  • Rahman, M. Z. U., Shaik, R. A., and Reddy, D. V. R. K. (2012). Efficient and simplified adaptive noise cancelers for ECG sensor based remote health monitoring. IEEE Sensors Journal, 12(3), 566-573. http://dx.doi.org/10.1109/JSEN.2011.2111453
  • Salman, M. N., Rao, P. T., and Rahman, M. Z. U. (2017). Cardiac signal enhancement using normalised variable step algorithm for remote healthcare monitoring systems. International Journal of Medical Engineering and Informatics, 9(2), 145-161. http://dx.doi.org/10.1504/IJMEI.2017.083091
  • Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction (4th ed.). Hoboken, NJ: John Wiley & Sons.
  • Xu, G. F., Bose, T., and Schroeder, J. (1998). Channel equalization using an Euclidean direction search based adaptive algorithm. IEEE GLOBECOM 1998 (pp. 3479-3484). Sydney, NSW, Australia.
  • Xu, G. F., Bose, T., and Schroeder, J. (1999a). The Euclidean direction search algorithm for adaptive filtering. 1999 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 146-149). Orlando, FL, USA. doi:10.1109/ISCAS.1999.778806
  • Xu, G. F., Bose, T., and Thomas, J. (1999b). A fast adaptive algorithm for image restoration. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(1), 216-220. http://dx.doi.org/10.1109/81.739269

ECG Noise Cancellation with Recursive Gauss-Seidel Algorithm

Yıl 2024, Cilt: 14 Sayı: 4, 2115 - 2127, 15.12.2024
https://doi.org/10.31466/kfbd.1524020

Öz

Electrocardiogram (ECG) signals provide information about heart functions and some cardiac diseases. However, various interferences distort the ECG waveforms during its measurement and transmission can cause inaccurate analysis and diagnosis. So, this unwanted disturbance signals must be eliminated and an acceptable ECG signal must be extracted the noisy ECG recordings. Researchers developed several methods to overcome the undesired noises and interferences contaminated to the ECG recordings. The adaptive filtering techniques have attracted the attention of scientists due to their adaptation mechanism to time-varying nature of undesired signals. Most of the presented adaptive filtering algorithms are gradient-based and have the advantage of simple implementation, but are affected negatively by disturbance signals; for example, they can have slow convergence rates and poor steady-state properties. Least squares-based algorithms are advantageous due to their faster convergence rates and better steady-state properties. In this paper, Recursive Gauss-Seidel (RGS) algorithm, which is an alternative least squares-based method to Recursive Least Squares (RLS) algorithm with less computational complexity, is presented to obtain an acceptable waveform from noisy ECG recordings. The denoising performance of the RGS algorithm is studied and compared to the widely used gradient-based algorithms and the popular RLS algorithm.

Kaynakça

  • Berkaya, S. K., Uysal, A. K., Gunal, E. S., Ergin, S., Gunal, S., and Gulmezoglu, M. B. (2018). A survey on ECG analysis. Biomedical Signal Processing and Control, 43, 216-235. http://dx.doi.org/10.1016/j.bspc.2018.03.003
  • Bose, T. (2004). Digital signal and image processing. Hoboken, NJ: John Wiley & Sons.
  • Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L., and Raghuvanshi, D. K. (2020). Review of noise removal techniques in ECG signals. IET Signal Processing, 14(9), 569-590. http://dx.doi.org/10.1049/iet-spr.2020.0104
  • Clifford, G. D., Azuaje, F., and McSharry, P. E. (Eds.). (2006). Advanced methods and tools for ECG data analysis. Norwood, MA: Artech House.
  • Faiz, M. M. U., and Kale, I. (2022). Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers. Array, 14, 1-9. http://dx.doi.org/10.1016/j.array.2022.100133
  • Gowri, T., Kumar, P. R., and Reddy, D. V. R. K. (2014). An efficient variable step size least mean square adaptive algorithm used to enhance the quality of electrocardiogram signal. In S. Thampi, A. Gelbukh, and J. Mukhopadhyay (Ed.), Advances in signal processing and intelligent recognition systems (pp. 463-475). Switzerland: Springer International Publishing.
  • Gowri, T., Kumar, P. R., Reddy, D. V. R. K., and Rahman, M. Z. U. (2015). Denoising artifacts from cardiac signal using normalized variable step size LMS algorithm. Sensors & Transducers Journal, 187(4), 138-145.
  • Gowri, T., Kumar, P. R., and Reddy, D. V. R. K. (2017). Performance of variable step size LMS adaptive algorithm for the removal of artifacts from electrocardiogram using DSP processor. International Conference on Intelligent Sustainable Systems (ICISS) (pp. 342-346). Palladam, India.
  • Hatun, M., and Koçal, O. H. (2012). Recursive Gauss-Seidel algorithm for direct self‐tuning control. International Journal of Adaptive Control and Signal Processing, 26(5), 435-450. http://dx.doi.org/10.1002/acs.1296
  • Haykin, S. (2002). Adaptive filter theory (4th ed.). Upper Saddle River, NJ: Prentice-Hall.
  • Karthik, G. V. S., and Sugumar, S. J. (2013). High resolution cardiac signal extraction using novel adaptive noise cancelers. International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s) (pp. 564-568). Kottayam, India.
  • Koçal, O. H. (1998). A new approach to least-squares adaptive filtering. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS’98) (pp. 261-264). Monterey, CA, USA.
  • Mabey, G. W., Gunther, J., and Bose, T. (2004). A Euclidean direction based algorithm for blind source separation using a natural gradient. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’04) (pp. 561-564). Montreal, QC, Canada.
  • Malghan, P. G., and Hota, M. K. (2020). A review on ECG filtering techniques for rhythm analysis. Research on Biomedical Engineering, 36(2020), 171-186. http://dx.doi.org/10.1007/s42600-020-00057-9
  • Mir, H. Y., and Singh, O. (2021). ECG denoising and feature extraction techniques - a review. Journal of Medical Engineering & Technology, 45(8), 672-684. http://dx.doi.org/10.1080/03091902.2021.1955032
  • Moody, G., and Mark, R. (2005). MIT-BIH Arrhythmia Database, v1.0.0. Retrieved from https://physionet.org/content/mitdb/1.0.0/
  • Moody, G., and Mark, R. (1999). MIT-BIH Noise Stress Test Database, v1.0.0. Retrieved from https://physionet.org/content/nstdb/1.0.0/
  • Rahman, M. Z. U., Shaik, R. A., and Reddy, D. V. R. K. (2009). Noise cancellation in ECG signals using computationally simplified adaptive filtering techniques: application to biotelemetry. Signal Processing: An International Journal (SPIJ), 3(5), 120-131.
  • Rahman, M. Z. U., Shaik, R. A., and Reddy, D. V. R. K. (2011). Efficient sign based normalized adaptive filtering techniques for cancelation of artifacts in ECG signals: application to wireless biotelemetry. Signal Processing, 91(2) 225-239. http://dx.doi.org/10.1016/j.sigpro.2010.07.002
  • Rahman, M. Z. U., Shaik, R. A., and Reddy, D. V. R. K. (2012). Efficient and simplified adaptive noise cancelers for ECG sensor based remote health monitoring. IEEE Sensors Journal, 12(3), 566-573. http://dx.doi.org/10.1109/JSEN.2011.2111453
  • Salman, M. N., Rao, P. T., and Rahman, M. Z. U. (2017). Cardiac signal enhancement using normalised variable step algorithm for remote healthcare monitoring systems. International Journal of Medical Engineering and Informatics, 9(2), 145-161. http://dx.doi.org/10.1504/IJMEI.2017.083091
  • Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction (4th ed.). Hoboken, NJ: John Wiley & Sons.
  • Xu, G. F., Bose, T., and Schroeder, J. (1998). Channel equalization using an Euclidean direction search based adaptive algorithm. IEEE GLOBECOM 1998 (pp. 3479-3484). Sydney, NSW, Australia.
  • Xu, G. F., Bose, T., and Schroeder, J. (1999a). The Euclidean direction search algorithm for adaptive filtering. 1999 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 146-149). Orlando, FL, USA. doi:10.1109/ISCAS.1999.778806
  • Xu, G. F., Bose, T., and Thomas, J. (1999b). A fast adaptive algorithm for image restoration. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(1), 216-220. http://dx.doi.org/10.1109/81.739269
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomedikal Enstrümantasyon, Biyomedikal Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Metin Hatun 0000-0003-0279-5508

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 29 Temmuz 2024
Kabul Tarihi 27 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Hatun, M. (2024). ECG Noise Cancellation with Recursive Gauss-Seidel Algorithm. Karadeniz Fen Bilimleri Dergisi, 14(4), 2115-2127. https://doi.org/10.31466/kfbd.1524020