Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Fuzzy Problemin Grafiksel Analizi Üzerine

Yıl 2024, Cilt: 14 Sayı: 4, 2328 - 2337, 15.12.2024
https://doi.org/10.31466/kfbd.1561335

Öz

Fuzzy Laplace dönüşüm metodu fuzzy diferansiyel denklemleri çözmek için çok kullanışlıdır ve bu metod pratikte önemli bir metoddur. Bu çalışma ikinci mertebeden bir fuzzy problem üzerinedir. Bu çalışmada, fuzzy Laplace dönüşüm metodunu kullanarak negatif fuzzy katsayılı bir fuzzy problemini araştırıyoruz. Genelleştirilmiş Hukuhara diferansiyellenebilirliği kullandığımız için, çözümler dört farklı durum altında incelenmiştir. Sayısal bir örnek verilmiştir. Çözümlerin grafikleri alfa seviye setleri için çizilmiştir. Çalışmanın sonunda sonuçlar sunulmuştur.

Kaynakça

  • Akın Ö., Khaniyev T., Bayeğ S. and Türkşen B. (2016). Solving a second order fuzzy initial value problem using the heaviside function, Turkish Journal of Mathematics and Computer Science, 4, 16–25.
  • Allahviranloo T., Ahmady N. and Ahmady E. (2007). Numerical solution of fuzzy differential equations by predictor-corrector method, Information Sciences, 177(7), 1633-1647.
  • Allahviranloo T. and Ahmadi M. B. (2010). Fuzzy Laplace transforms, Soft Computing, 14(3), 235–243.
  • Allahviranloo T. and Gholami S. (2012). Note on ‘‘Generalized Hukuhara differentiability of interval-valued functions and interval differential equations’’, Journal of Fuzzy Set Valued Analysis, 2012, 1-4.
  • Bayeğ S., Mert R., Akın Ö. and Khaniyev T. (2022). On a type-2 fuzzy approach to solution of second-order initial value problem, Soft Computing, 26, 1671-1683.
  • Bede B., Rudas I. J. and Bencsik A. L. (2007). First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177(7), 1648–1662.
  • Belhallaj Z., Melliani S., Elomari M. and Chadli L. S. (2023). Application of the intuitionistic fuzzy Laplace transform method for resolution of one dimensional wave equations, International Journal of Difference Equations, 18(1), 211-225.
  • Eljaoui E. and Melliani S. (2023). A study of some properties of fuzzy Laplace transform with their applications in solving the second-order fuzzy linear partial differential equations, Advances in Fuzzy Systems, 2023(7868762), 1-15.
  • Gültekin Çitil H. (2019). Comparisons of the exact and the approximate solutions of second-order fuzzy linear boundary value problems, Miskolc Mathematical Notes, 20(2) 823–837.
  • Gültekin Çitil H. (2020). Solving the fuzzy initial value problem with negative coefficient by using fuzzy Laplace transform, Facta Universitatis, Series: Mathematics and Informatics, 35(1), 201-215.
  • Gültekin Çitil H. (2020). The problem with fuzzy eigenvalue parameter in one of the boundary conditions, An International Journal of Optimization and Control: Theories & Applications, 10(2), 159-165.
  • Ivaz K., Khastan A. and Nieto J. J. (2013). A numerical method for fuzzy differential equations and hybrid fuzzy differential equations, Abstract and Applied Analysis, 2013(735128),1-10.
  • Jafari R., Yu W., Razvarz S. and. Gegov A. (2021). Numerical methods for solving fuzzy equations: A survey, Fuzzy Sets and Systems, 404, 1–22.
  • Khastan A. and Nieto J. J. (2010). A boundary value problem for second order fuzzy differential equations, Nonlinear Analysis, 72(9-10), 3583-3593.
  • Khastan A., Bahrami F. and Ivaz K. (2009). New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, Boundary Value Problems, 2009(395714), 1-13.
  • Mallak S., Attili B. and Subuh M. (2022). Numerical treatment of hybrid fuzzy differential equations subject to trapezoidal and triangular fuzzy initial conditions using Picard's and the general linear method, Computation, 10(168), 1-19.
  • Patel K. R. and Desai N. B. (2017). Solution of fuzzy initial value problems by fuzzy Laplace transform, Kalpa Publications in Computing, 2, 25-37.
  • Salahshour S. and Allahviranloo T. (2013) Applications of fuzzy Laplace transforms, Soft Computing, 17(1), 145-158.
  • Salahshour S. and Haghi E. (2010). Solving fuzzy heat equation by fuzzy Laplace transforms, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications, Communications in Computer and Information, 81, 512-521.
  • Salgado S. A. B., Barros L. C., Esmi E. and Eduardo Sanchez D. (2019). Solution of a fuzzy differential equation with interactivity via Laplace transform, Journal of Intelligent & Fuzzy Systems, 37(2), 2495-2501.
  • Salgado S. A. B., Esmi E., Eduardo Sanchez D. and Barros L. C. (2021). Solving interactive fuzzy initial value problem via fuzzy Laplace transform, Computational and Applied Mathematics, 40, 1-14.
  • Samuel M. Y. and Tahir A. (2021). Solution of first order fuzzy partial differential equations by fuzzy Laplace transform method, Bayero Journal of Pure and Applied Sciences, 14(2), 37 – 51.
  • Saqib M., Akram M., Bashir S. and Allahviranloo T. (2021). A Runge-Kutta numerical method to approximate the solution of bipolar fuzzy initial value problems, Computational and Applied Mathematics, 40(151), 1-43.

On the Graphical Analysis of a Fuzzy Problem

Yıl 2024, Cilt: 14 Sayı: 4, 2328 - 2337, 15.12.2024
https://doi.org/10.31466/kfbd.1561335

Öz

The fuzzy Laplace transform method is very useful to solve fuzzy differential equations and this method is an important method in practice. This paper is on a second-order fuzzy problem. In this study, we research the fuzzy problem with negative fuzzy coefficient using the method of fuzzy Laplace transform. Since we use generalized Hukuhara differentiability, solutions are investigated under the four different situations. A numerical example is given. Graphics of the solutions are drawn for alpha level sets. Conclusions are presented at the end of the paper.

Kaynakça

  • Akın Ö., Khaniyev T., Bayeğ S. and Türkşen B. (2016). Solving a second order fuzzy initial value problem using the heaviside function, Turkish Journal of Mathematics and Computer Science, 4, 16–25.
  • Allahviranloo T., Ahmady N. and Ahmady E. (2007). Numerical solution of fuzzy differential equations by predictor-corrector method, Information Sciences, 177(7), 1633-1647.
  • Allahviranloo T. and Ahmadi M. B. (2010). Fuzzy Laplace transforms, Soft Computing, 14(3), 235–243.
  • Allahviranloo T. and Gholami S. (2012). Note on ‘‘Generalized Hukuhara differentiability of interval-valued functions and interval differential equations’’, Journal of Fuzzy Set Valued Analysis, 2012, 1-4.
  • Bayeğ S., Mert R., Akın Ö. and Khaniyev T. (2022). On a type-2 fuzzy approach to solution of second-order initial value problem, Soft Computing, 26, 1671-1683.
  • Bede B., Rudas I. J. and Bencsik A. L. (2007). First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177(7), 1648–1662.
  • Belhallaj Z., Melliani S., Elomari M. and Chadli L. S. (2023). Application of the intuitionistic fuzzy Laplace transform method for resolution of one dimensional wave equations, International Journal of Difference Equations, 18(1), 211-225.
  • Eljaoui E. and Melliani S. (2023). A study of some properties of fuzzy Laplace transform with their applications in solving the second-order fuzzy linear partial differential equations, Advances in Fuzzy Systems, 2023(7868762), 1-15.
  • Gültekin Çitil H. (2019). Comparisons of the exact and the approximate solutions of second-order fuzzy linear boundary value problems, Miskolc Mathematical Notes, 20(2) 823–837.
  • Gültekin Çitil H. (2020). Solving the fuzzy initial value problem with negative coefficient by using fuzzy Laplace transform, Facta Universitatis, Series: Mathematics and Informatics, 35(1), 201-215.
  • Gültekin Çitil H. (2020). The problem with fuzzy eigenvalue parameter in one of the boundary conditions, An International Journal of Optimization and Control: Theories & Applications, 10(2), 159-165.
  • Ivaz K., Khastan A. and Nieto J. J. (2013). A numerical method for fuzzy differential equations and hybrid fuzzy differential equations, Abstract and Applied Analysis, 2013(735128),1-10.
  • Jafari R., Yu W., Razvarz S. and. Gegov A. (2021). Numerical methods for solving fuzzy equations: A survey, Fuzzy Sets and Systems, 404, 1–22.
  • Khastan A. and Nieto J. J. (2010). A boundary value problem for second order fuzzy differential equations, Nonlinear Analysis, 72(9-10), 3583-3593.
  • Khastan A., Bahrami F. and Ivaz K. (2009). New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, Boundary Value Problems, 2009(395714), 1-13.
  • Mallak S., Attili B. and Subuh M. (2022). Numerical treatment of hybrid fuzzy differential equations subject to trapezoidal and triangular fuzzy initial conditions using Picard's and the general linear method, Computation, 10(168), 1-19.
  • Patel K. R. and Desai N. B. (2017). Solution of fuzzy initial value problems by fuzzy Laplace transform, Kalpa Publications in Computing, 2, 25-37.
  • Salahshour S. and Allahviranloo T. (2013) Applications of fuzzy Laplace transforms, Soft Computing, 17(1), 145-158.
  • Salahshour S. and Haghi E. (2010). Solving fuzzy heat equation by fuzzy Laplace transforms, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications, Communications in Computer and Information, 81, 512-521.
  • Salgado S. A. B., Barros L. C., Esmi E. and Eduardo Sanchez D. (2019). Solution of a fuzzy differential equation with interactivity via Laplace transform, Journal of Intelligent & Fuzzy Systems, 37(2), 2495-2501.
  • Salgado S. A. B., Esmi E., Eduardo Sanchez D. and Barros L. C. (2021). Solving interactive fuzzy initial value problem via fuzzy Laplace transform, Computational and Applied Mathematics, 40, 1-14.
  • Samuel M. Y. and Tahir A. (2021). Solution of first order fuzzy partial differential equations by fuzzy Laplace transform method, Bayero Journal of Pure and Applied Sciences, 14(2), 37 – 51.
  • Saqib M., Akram M., Bashir S. and Allahviranloo T. (2021). A Runge-Kutta numerical method to approximate the solution of bipolar fuzzy initial value problems, Computational and Applied Mathematics, 40(151), 1-43.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hülya Gültekin Çitil 0000-0002-3543-033X

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 4 Ekim 2024
Kabul Tarihi 9 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Gültekin Çitil, H. (2024). On the Graphical Analysis of a Fuzzy Problem. Karadeniz Fen Bilimleri Dergisi, 14(4), 2328-2337. https://doi.org/10.31466/kfbd.1561335