Araştırma Makalesi
BibTex RIS Kaynak Göster

Breit-Wigner Yaklaşımından Farklı Bir Yöntemle Pc(4440) ve Pc(4457) Spinlerinin Tahmin Edilmesi

Yıl 2025, Cilt: 15 Sayı: 1, 171 - 181, 15.03.2025
https://doi.org/10.31466/kfbd.1517746

Öz

Ağır kuark simetrileri ağır hadronların anlaşılmasında önemli bir rol oynar. Eğer Pc(4440) ve Pc(4457) durumları gerçekten 〖D ̅^* Σ〗_c^ molekülü ise, ağır kuark spin simetri eşleri olarak sınıflandırılabilirler. Bu kabuller, deneysel olarak belirlenemeyen spin durumlarını açıklığa kavuşturulmasının yolunu açmaktadır. Pc(4440) ve Pc(4457) durumları detaylı çalışılmalarına rağmen spin durumları henüz belirlenememiştir. Breit-Wigner parametrizasyonu rezonansları elde etmekte geleneksel yöntem olmasına rağmen, eşik etkisini dikkate almadığından dolayı Pc(4312), Pc(4440) ve Pc(4457) gibi eşiğe yakın rezonanslar için uygun değildir. Bu eksikliği bertaraf etmek için yakın zamanda önerilen ve Sill adı verilen alternatif dağılım, spin durumlarını tahmin etmekte kullanılacaktır. Pc(4312), Pc(4440) ve Pc(4457) durumları için Sill değerlerinin kullanılması, Pc(4440) ve Pc(4457)' nin spin durumlarının belirlenmesinde yardımcı olabilir.

Kaynakça

  • Aaij, R. et al. (2015). Observation of J/ψp Resonances Consistent with Pentaquark States in Λ0 → J/ψK−p Decays. Phys. Rev. Lett., 115:072001.
  • Aaij, R. et al. (2019). Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+. Phys. Rev. Lett., 122(22):222001.
  • Aubert, B. et al. (2008). A Study of B → X(3872)K, with X(3872) → J/Ψπ+π−. Phys. Rev. D, 77:111101.
  • Bondar, A. et al. (2012). Observation of two charged bottomoniumlike resonances in Υ(5s) decays. Phys. Rev. Lett., 108:122001.
  • Chen, Y. H., Daub, J. T.,Guo, F.-K., Kubis, B, Meißner, U.-G., and Zou, B.-S. (2016). Effect of Zb states on Υ(3s) → Υ(1s)ππ decays. Phys. Rev. D, 93:034030.
  • Chen, H. X., Chen, W., and Zhu, S. L. (2019). Possible interpretations of the Pc(4312), Pc(4440), and Pc(4457). Phys. Rev. D, 100(5):051501(R).
  • Cheng, J. B., and Liu, Y. R. (2019). Pc(4457)+, Pc(4440)+, and Pc(4312)+: Molecules or compact pentaquarks?. Phys. Rev. D, 100:054002.
  • Cho, P. (1994). Heavy hadron chiral perturbation theory. Nucl.Phys. B, 421(3):683–686.
  • Choi, S. K. et al. (2020). Observation of a narrow charmoniumlike state in exclusive B± → K±π+π−j/ψ decays. Phys. Rev. Lett., 91:262001.
  • Cleven, M., Guo, F.-K., Hanhart, C., and Meissner, U.-G. (2011). Bound state nature of the exotic Zb states. Eur. Phys. J. A, 47:120.
  • Cleven, M. (2013). Systematic Study of Hadronic Molecules in the Heavy-Quark Sector (Doctoral dissertation). Bonn University.
  • Du, M. L., Baru, V., Guo, F. K., Hanhart, C., Meißner, U. G., Oller, J., and Wang, Q. (2020). Interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380). Phys. Rev. Lett., 124:072001.
  • Eides, M. I., Petrov, V. Y., and Polyakov, M. V. (2020). New LHCb pentaquarks as hadrocharmonium states. Mod. Phys. Lett. A, 35(18):2050151.
  • Falk, A. F., and Luke, M. (1992). Strong decays of excited heavy mesons in chiral perturbation theory. Phys. Lett. B, 292(1):119– 127.
  • Fernandez-Ramirez, C. A., Pilloni, M., Albaladejo, A., Jackura, V., Mathieu, M., and Szczepaniak, A. P. (2019). Interpretation of the LHCb Pc(4312)+ signal. Phys. Rev. Lett., 123:092001.
  • Giacosa, F., Okopinska, A., and Shastry, V. (2021). A simple alternative to the relativistic Breit–Wigner distribution. Eur. Phys. J. A, 57(12):336.
  • Grinstein, B., Jenkins, E. E. , Manohar, A. V. Savage, M. J. and Wise M. B.(1992). Chiral perturbation theory for fD(s)/ fD and BB(s) / BB. Nucl. Phys. B 380 (1992), 369-376.
  • Kang, X.-W., Guo, Z.-H., and Oller, J. A. (2016). General considerations on the nature of Zb(10610) and Zb(10650) from their pole positions. Phys. Rev. D, 94(1):014012.
  • Kang, X.-W., and Oller, J. A. (2017). Different pole structures in line shapes of the X(3872). Eur. Phys. J. C, 77(6):399.
  • Karliner, M., and Rosner, J. L. (2015). New exotic meson and baryon resonances from doubly heavy hadronic molecules. Phys. Rev. Lett., 115(122001).
  • Liu, M. Z., Peng, F. Z., Sanchez, M. S., and Valderrama, M. P. (2018). Heavy-quark symmetry partners of the Pc(4450) pentaquark. Phys. Rev. D, 98:114030.
  • Liu, M. Z., Wu, T. W., S´anchez , M. S., Valderrama, M. P., Geng, L. S., and Xie, J. J. (2021). Spin-parities of the Pc(4440) and Pc(4457) in the one-boson-exchange model. Phys. Rev. D, 103:054004.
  • Liu, Z. W., Lu, J.-X., Liu, M.-Z., and Geng, L.-S. (2023). Distinguishing the spins of Pc(4440) and Pc(4457) with femtoscopic correlation functions. Phys. Rev. D, 108:L031503.
  • Lu , J. X., Geng, L. S. and Valderrama, M. P.(2019). Heavy baryon-antibaryon molecules in effective field theory. Phys.Rev. D 99 no.7, 074026.
  • Neubert, M. (1994). Heavy-quark symmetry. Physics Reports, 245(5):259–395.
  • Nieves, J. and Valderrama, M. P. (2012). The Heavy Quark Spin Symmetry Partners of the X(3872). Phys. Rev. D 86 056004.
  • Pimikov, A., Lee, H. J., and Zhang, P. (2020). Hidden-charm pentaquarks with color-octet substructure in QCD sum rules. Phys. Rev. D, 101:014002.
  • Valderrama, M. P. (2019). One pion exchange and the quantum numbers of the Pc(4440) and Pc(4457) pentaquarks. Phys. Rev. D, 100:094028.
  • Weng, X. Z., Chen, X. L., Deng, W. Z., and Zhu, S. L. (2019). Hidden-charm pentaquarks and Pc states. Phys. Rev. D, 100:016014.
  • Workman, R. L., and et al. (2022). Review of Particle Physics. PTEP, 2022:083C01.
  • Xiang, J. B.,Chen, H. X.,Chen, W., Li, X. B., Yao, X. Q., and Zhu, S. L. (2019). Revisiting hidden-charm pentaquarks from QCD sum rules. Chin. Phys. C, 43(3):034104.
  • Xiao, C. W., Nieves, J., and Oset, E. (2019). Heavy quark spin symmetric molecular states from D(∗)Σ(∗) and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D, 100:014021.
  • Yamaguchi, Y., Garcia-Tecocoatzi, H., Giachino, A., Hosaka, A., Santopinto, E., Takeuchi, S., and Takizawa, M. (2020). Pc pentaquarks with chiral tensor and quark dynamics. Phys. Rev. D, 101(9):091502(R).
  • Yıldırım, D. (2023). Spin partners of the B(∗)B ̅(∗) resonances with a different approach than the Breit–Wigner parameterization. Eur. Phys. J. A 59 (2023) no.7, 148.
  • Zhang, Z., Liu, J., Hu, J., Wang, Q., and Meißner,U.-G. (2023) Revealing the nature of hidden charm pentaquarks with machine learning. Science Bulletin, 68(10):981–989.
  • Zyla, P. A. et al. (2020). Review of Particle Physics. PTEP, 2020(8):083C01.

Predicting Pc(4440) and Pc(4457) Spins with an Different Alternative Method Instead of Using the Breit-Wigner Approach

Yıl 2025, Cilt: 15 Sayı: 1, 171 - 181, 15.03.2025
https://doi.org/10.31466/kfbd.1517746

Öz

The heavy quark symmetries play a necessary role in understanding heavy hadron states. If the Pc(4440) and Pc(4457) states are indeed 〖D ̅^* Σ〗_c^ molecules, they can be classified as heavy quark spin symmetry partners. These acceptances pave the way to clarify spin states that are not determined experimentally. Despite detailed studies on the Pc(4440) and Pc(4457) states, their spin states remain undetermined. While the Breit-Wigner parameterization is the conventional method for obtaining resonance parameters, it is unsuitable for near-threshold resonances such as the Pc(4312), Pc(4440), and Pc(4457) due to its failure to account for the threshold effect. To rectify this limitation, the recently proposed alternative distribution called the Sill is employed to predict their spin states. The use of the Sill values for the Pc(4312), Pc(4440), and Pc(4457) may assist in determining the spin states of the Pc(4440) and Pc(4457).

Kaynakça

  • Aaij, R. et al. (2015). Observation of J/ψp Resonances Consistent with Pentaquark States in Λ0 → J/ψK−p Decays. Phys. Rev. Lett., 115:072001.
  • Aaij, R. et al. (2019). Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+. Phys. Rev. Lett., 122(22):222001.
  • Aubert, B. et al. (2008). A Study of B → X(3872)K, with X(3872) → J/Ψπ+π−. Phys. Rev. D, 77:111101.
  • Bondar, A. et al. (2012). Observation of two charged bottomoniumlike resonances in Υ(5s) decays. Phys. Rev. Lett., 108:122001.
  • Chen, Y. H., Daub, J. T.,Guo, F.-K., Kubis, B, Meißner, U.-G., and Zou, B.-S. (2016). Effect of Zb states on Υ(3s) → Υ(1s)ππ decays. Phys. Rev. D, 93:034030.
  • Chen, H. X., Chen, W., and Zhu, S. L. (2019). Possible interpretations of the Pc(4312), Pc(4440), and Pc(4457). Phys. Rev. D, 100(5):051501(R).
  • Cheng, J. B., and Liu, Y. R. (2019). Pc(4457)+, Pc(4440)+, and Pc(4312)+: Molecules or compact pentaquarks?. Phys. Rev. D, 100:054002.
  • Cho, P. (1994). Heavy hadron chiral perturbation theory. Nucl.Phys. B, 421(3):683–686.
  • Choi, S. K. et al. (2020). Observation of a narrow charmoniumlike state in exclusive B± → K±π+π−j/ψ decays. Phys. Rev. Lett., 91:262001.
  • Cleven, M., Guo, F.-K., Hanhart, C., and Meissner, U.-G. (2011). Bound state nature of the exotic Zb states. Eur. Phys. J. A, 47:120.
  • Cleven, M. (2013). Systematic Study of Hadronic Molecules in the Heavy-Quark Sector (Doctoral dissertation). Bonn University.
  • Du, M. L., Baru, V., Guo, F. K., Hanhart, C., Meißner, U. G., Oller, J., and Wang, Q. (2020). Interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380). Phys. Rev. Lett., 124:072001.
  • Eides, M. I., Petrov, V. Y., and Polyakov, M. V. (2020). New LHCb pentaquarks as hadrocharmonium states. Mod. Phys. Lett. A, 35(18):2050151.
  • Falk, A. F., and Luke, M. (1992). Strong decays of excited heavy mesons in chiral perturbation theory. Phys. Lett. B, 292(1):119– 127.
  • Fernandez-Ramirez, C. A., Pilloni, M., Albaladejo, A., Jackura, V., Mathieu, M., and Szczepaniak, A. P. (2019). Interpretation of the LHCb Pc(4312)+ signal. Phys. Rev. Lett., 123:092001.
  • Giacosa, F., Okopinska, A., and Shastry, V. (2021). A simple alternative to the relativistic Breit–Wigner distribution. Eur. Phys. J. A, 57(12):336.
  • Grinstein, B., Jenkins, E. E. , Manohar, A. V. Savage, M. J. and Wise M. B.(1992). Chiral perturbation theory for fD(s)/ fD and BB(s) / BB. Nucl. Phys. B 380 (1992), 369-376.
  • Kang, X.-W., Guo, Z.-H., and Oller, J. A. (2016). General considerations on the nature of Zb(10610) and Zb(10650) from their pole positions. Phys. Rev. D, 94(1):014012.
  • Kang, X.-W., and Oller, J. A. (2017). Different pole structures in line shapes of the X(3872). Eur. Phys. J. C, 77(6):399.
  • Karliner, M., and Rosner, J. L. (2015). New exotic meson and baryon resonances from doubly heavy hadronic molecules. Phys. Rev. Lett., 115(122001).
  • Liu, M. Z., Peng, F. Z., Sanchez, M. S., and Valderrama, M. P. (2018). Heavy-quark symmetry partners of the Pc(4450) pentaquark. Phys. Rev. D, 98:114030.
  • Liu, M. Z., Wu, T. W., S´anchez , M. S., Valderrama, M. P., Geng, L. S., and Xie, J. J. (2021). Spin-parities of the Pc(4440) and Pc(4457) in the one-boson-exchange model. Phys. Rev. D, 103:054004.
  • Liu, Z. W., Lu, J.-X., Liu, M.-Z., and Geng, L.-S. (2023). Distinguishing the spins of Pc(4440) and Pc(4457) with femtoscopic correlation functions. Phys. Rev. D, 108:L031503.
  • Lu , J. X., Geng, L. S. and Valderrama, M. P.(2019). Heavy baryon-antibaryon molecules in effective field theory. Phys.Rev. D 99 no.7, 074026.
  • Neubert, M. (1994). Heavy-quark symmetry. Physics Reports, 245(5):259–395.
  • Nieves, J. and Valderrama, M. P. (2012). The Heavy Quark Spin Symmetry Partners of the X(3872). Phys. Rev. D 86 056004.
  • Pimikov, A., Lee, H. J., and Zhang, P. (2020). Hidden-charm pentaquarks with color-octet substructure in QCD sum rules. Phys. Rev. D, 101:014002.
  • Valderrama, M. P. (2019). One pion exchange and the quantum numbers of the Pc(4440) and Pc(4457) pentaquarks. Phys. Rev. D, 100:094028.
  • Weng, X. Z., Chen, X. L., Deng, W. Z., and Zhu, S. L. (2019). Hidden-charm pentaquarks and Pc states. Phys. Rev. D, 100:016014.
  • Workman, R. L., and et al. (2022). Review of Particle Physics. PTEP, 2022:083C01.
  • Xiang, J. B.,Chen, H. X.,Chen, W., Li, X. B., Yao, X. Q., and Zhu, S. L. (2019). Revisiting hidden-charm pentaquarks from QCD sum rules. Chin. Phys. C, 43(3):034104.
  • Xiao, C. W., Nieves, J., and Oset, E. (2019). Heavy quark spin symmetric molecular states from D(∗)Σ(∗) and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D, 100:014021.
  • Yamaguchi, Y., Garcia-Tecocoatzi, H., Giachino, A., Hosaka, A., Santopinto, E., Takeuchi, S., and Takizawa, M. (2020). Pc pentaquarks with chiral tensor and quark dynamics. Phys. Rev. D, 101(9):091502(R).
  • Yıldırım, D. (2023). Spin partners of the B(∗)B ̅(∗) resonances with a different approach than the Breit–Wigner parameterization. Eur. Phys. J. A 59 (2023) no.7, 148.
  • Zhang, Z., Liu, J., Hu, J., Wang, Q., and Meißner,U.-G. (2023) Revealing the nature of hidden charm pentaquarks with machine learning. Science Bulletin, 68(10):981–989.
  • Zyla, P. A. et al. (2020). Review of Particle Physics. PTEP, 2020(8):083C01.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Duygu Yıldırım 0000-0001-5499-9727

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 17 Temmuz 2024
Kabul Tarihi 24 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Yıldırım, D. (2025). Predicting Pc(4440) and Pc(4457) Spins with an Different Alternative Method Instead of Using the Breit-Wigner Approach. Karadeniz Fen Bilimleri Dergisi, 15(1), 171-181. https://doi.org/10.31466/kfbd.1517746