Araştırma Makalesi
BibTex RIS Kaynak Göster

Buhar Sıkıştırmalı Soğutma Sisteminin Çeşitli Soğutucularla Termodinamik Analizi

Yıl 2025, Cilt: 15 Sayı: 1, 392 - 405, 15.03.2025
https://doi.org/10.31466/kfbd.1571839

Öz

Bu çalışmada, temel buhar sıkıştırmalı soğutma sisteminde enerji ve ekserji analizi yapılmıştır. Sistem, buharlaştırıcı, kompresör, kondenser ve genleşme vanası olmak üzere dört kısımdan oluşmaktadır. Her bir bileşende enerji ve ekserji dengesi kullanılmış ve temel buhar sıkıştırmalı soğutma sisteminin etkinliği ortaya konulmuştur. Çalışmada, farklı soğutucu akışkanların sistem performansına etkisini görmek amacıyla sabit ölü hal sıcaklığında (T0 = 25 oC) dört farklı gaz (R134a, R125, R141b, R423a) analiz edilmiştir. Sonuçlara göre, R134a'nın COP değeri 2,50 iken toplam ekserji yıkımı 2,31 kW'tır. R423a'nın COP değeri 0,22 iken toplam ekserji yıkımı 0,50 kW'tır. R141b'nin COP değeri 0,60 iken toplam ekserji yıkımı 7,38 kW'tır. R125'in COP değeri 0,53 iken toplam ekserji yıkımı 4,74 kW'tır.

Kaynakça

  • Ahamed, J. U., Saidur, R., & Masjuki, H. H. (2011). A review on exergy analysis of vapor compression refrigeration system. Renewable and Sustainable Energy Reviews, 15(3), 1593-1600.
  • Aized, T., Rashid, M., Riaz, F., Hamza, A., Nabi, H. Z., Sultan, M., ... & Krzywanski, J. (2022). Energy and exergy analysis of vapor compression refrigeration system with low-Gwp refrigerants. Energies, 15(19), 7246.
  • Baghsheikhi, M., & Mohammadi, M. (2023). Experimental investigation of the vapor-compression cooling system in a data center: energy and exergy analysis. Journal of Thermal Analysis and Calorimetry, 148(17), 9079-9097.
  • Baskaran, A., & Mathews, P. K. (2013). Energy and exergy analysis of a vapour compression refrigeration system with R134a, R152a and RE170. Arch. Des Sci, 66(3), 1-15.
  • Chandrasekharan, M. (2014). Exergy analysis of vapor compression refrigeration system using R12 and R134a as refrigerants. International Journal of Students’ Research in Technology & Management, 2(04), 134-139.
  • Kumar, S., Prevost, M., & Bugarel, R. (1989). Exergy analysis of a compression refrigeration system. Heat Recovery Systems and CHP, 9(2), 151-157.
  • Lee, Y. S., & Su, C. C. (2002). Experimental studies of isobutane (R600a) as the refrigerant in domestic refrigeration system. Applied Thermal Engineering, 22(5), 507-519.
  • Menlik, T., Demircioğlu, A., & Özkaya, M. G. (2013). Energy and exergy analysis of R22 and its alternatives in a vapour compression refrigeration system. International Journal of Exergy, 12(1), 11-30.
  • Özdil, N. F., Tantekin, A., & Pekdur, A. (2018). Performance assessment of a cogeneration system in food industry. Journal of Thermal Engineering, 4(2), 1847-1854.
  • Padilla, M., Revellin, R., & Bonjour, J. (2010). Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Conversion and Management, 51(11), 2195-2201.
  • Richardson, R. N., & Butterworth, J. S. (1995). The performance of propane/isobutane mixtures in a vapour-compression refrigeration system. International Journal of Refrigeration, 18(1), 58-62.
  • Seyam, S. (2019). Energy and exergy analysis of refrigeration systems. Low-temperature Technologies, 245.
  • Tantekin, A., & Ozdil, N. F. T. (2017). Thermodynamic analysis of a fluidized bed coal combustor steam plant in textile industry. Journal of Thermal Engineering, 3(6), 1607-1614.
  • Yılmaz, M., Cimşit, C., Keven, A., & Karaali, R. (2024). Energy, exergy, environmental, and enviroeconomic (4E) analysis of cascade vapor compression refrigeration systems using nanorefrigerants. Energy Reports, 12, 5521-5528.

Thermodynamic Analysis of Vapor Compression Refrigeration System with Various Refrigerants

Yıl 2025, Cilt: 15 Sayı: 1, 392 - 405, 15.03.2025
https://doi.org/10.31466/kfbd.1571839

Öz

The study analyzes energy and exergy in the basic vapor compression refrigeration system. The system consists of four parts as expansion valve, condenser, evaporator and compressor. In each component, energy and exergy balance is employed and the effectiveness of the basic vapor compression refrigeration system is presented. In the study, to evaluate the impact of different refrigerants on system effectiveness, four different gases (R134a, R125, R141b, R423a) at constant dead state temperature (T0 = 25 oC) are analyzed. According to the results, while the COP of R134a is 2.50, the total exergy destruction is 2.31 kW. While the COP of R423a is 0.22, the total exergy destruction is 0.50kW. While the COP of R141b is 0.60, the total exergy destruction is 7.38kW. While the COP of R125 is 0.53, the total exergy destruction is 4.74kW.

Etik Beyan

The author declares that this study complies with Research and Publication Ethics.

Destekleyen Kurum

There is no conflict of interest.

Teşekkür

The author would like to thank undergraduate student Mr. Arif YORAT for their valuable contributions to this study.

Kaynakça

  • Ahamed, J. U., Saidur, R., & Masjuki, H. H. (2011). A review on exergy analysis of vapor compression refrigeration system. Renewable and Sustainable Energy Reviews, 15(3), 1593-1600.
  • Aized, T., Rashid, M., Riaz, F., Hamza, A., Nabi, H. Z., Sultan, M., ... & Krzywanski, J. (2022). Energy and exergy analysis of vapor compression refrigeration system with low-Gwp refrigerants. Energies, 15(19), 7246.
  • Baghsheikhi, M., & Mohammadi, M. (2023). Experimental investigation of the vapor-compression cooling system in a data center: energy and exergy analysis. Journal of Thermal Analysis and Calorimetry, 148(17), 9079-9097.
  • Baskaran, A., & Mathews, P. K. (2013). Energy and exergy analysis of a vapour compression refrigeration system with R134a, R152a and RE170. Arch. Des Sci, 66(3), 1-15.
  • Chandrasekharan, M. (2014). Exergy analysis of vapor compression refrigeration system using R12 and R134a as refrigerants. International Journal of Students’ Research in Technology & Management, 2(04), 134-139.
  • Kumar, S., Prevost, M., & Bugarel, R. (1989). Exergy analysis of a compression refrigeration system. Heat Recovery Systems and CHP, 9(2), 151-157.
  • Lee, Y. S., & Su, C. C. (2002). Experimental studies of isobutane (R600a) as the refrigerant in domestic refrigeration system. Applied Thermal Engineering, 22(5), 507-519.
  • Menlik, T., Demircioğlu, A., & Özkaya, M. G. (2013). Energy and exergy analysis of R22 and its alternatives in a vapour compression refrigeration system. International Journal of Exergy, 12(1), 11-30.
  • Özdil, N. F., Tantekin, A., & Pekdur, A. (2018). Performance assessment of a cogeneration system in food industry. Journal of Thermal Engineering, 4(2), 1847-1854.
  • Padilla, M., Revellin, R., & Bonjour, J. (2010). Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Conversion and Management, 51(11), 2195-2201.
  • Richardson, R. N., & Butterworth, J. S. (1995). The performance of propane/isobutane mixtures in a vapour-compression refrigeration system. International Journal of Refrigeration, 18(1), 58-62.
  • Seyam, S. (2019). Energy and exergy analysis of refrigeration systems. Low-temperature Technologies, 245.
  • Tantekin, A., & Ozdil, N. F. T. (2017). Thermodynamic analysis of a fluidized bed coal combustor steam plant in textile industry. Journal of Thermal Engineering, 3(6), 1607-1614.
  • Yılmaz, M., Cimşit, C., Keven, A., & Karaali, R. (2024). Energy, exergy, environmental, and enviroeconomic (4E) analysis of cascade vapor compression refrigeration systems using nanorefrigerants. Energy Reports, 12, 5521-5528.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Verimliliği
Bölüm Makaleler
Yazarlar

Atakan Tantekin 0000-0002-8200-5686

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 22 Ekim 2024
Kabul Tarihi 18 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Tantekin, A. (2025). Thermodynamic Analysis of Vapor Compression Refrigeration System with Various Refrigerants. Karadeniz Fen Bilimleri Dergisi, 15(1), 392-405. https://doi.org/10.31466/kfbd.1571839