Araştırma Makalesi
BibTex RIS Kaynak Göster

A Simulation Study on Comparison of Parameter Estimation Methods for Inverse Weibull Distribution

Yıl 2025, Cilt: 15 Sayı: 3, 971 - 994, 15.09.2025
https://doi.org/10.31466/kfbd.1508353

Öz

The Inverse Weibull distribution, which is an appropriate model for analyzing lifespan data, can be used to model various characteristics such as useful life and depreciation periods. Due to its applicability in many different fields, it is important to effectively estimate the parameters of the Inverse Weibull distribution. Commonly used methods for estimating the parameters of the Inverse Weibull distribution include least squares, maximum likelihood, and Bayesian estimation methods. In the Bayesian estimation method, unlike classical approaches, parameters are also considered as random variables. Therefore, these parameters have their own distributions, known as prior distributions. These distributions are updated with sample information to obtain posterior distributions, and all inferences about the parameters are made using this posterior distribution. However, in applications, there are some challenges in calculating the posterior distribution. In such cases, numerical integration methods or simulation methods known as Markov Chain Monte Carlo methods are used to make inferences.In this study, the methods used to estimate the parameters of the Inverse Weibull distribution are examined, and these methods are compared through a simulation study. To compare the forecasting methods, mean squared error, root mean squared error, and mean absolute error metrics have been used.

Kaynakça

  • Ahmad, K.; Ahmad, S.; Ahmed, A. (2015). Classical and Bayesian Approach in Estimation of Scale Parameter of Inverse Weibull Distribution. Mathematical Theory and Modeling, 5(13), 2224-5804.
  • Algarni, S., Afify, A. Z., Elbatal, I., Elgarhy, M. (2020). The Extended Inverse Weibull Distribution: Properties and Applications, Complexity, 3297693, 11 pages, https://doi.org/10.1155/2020/3297693
  • Algarni, A., Elgarhy, M., Almarashi, A. M., Fayomi, A. and El-Saeed, A., E. (2021) .Classical and Bayesian Estimation of the Inverse Weibull Distribution: Using Progressive Type-I Censoring Scheme, Hindawi Advances in Civil Engineering, Article ID 5701529, 15 pageshttps://doi.org/10.1155/2021/5701529
  • Calabria, R., Pulcini, G. (1990). On the Maximum Likelihood and Least Squares Estimation in the Inverse Weibull Distribution. Statistics Applicata, 2, 53-66.
  • Calabria, R., Pulcini, G. (1994). Bayes 2-Sample Prediction for the Inverse Weibull Distribution. Communications in Statistics-Theory&Methods, 23, 1811-1824.
  • Carriere, J. (1992). Parametric Models for Life Tables. Transactions of society Actuaries, 44, 77-100.
  • Cengiz, M. A., Terzi, E., Şenel, T., Murat, N. (2012). Lojistik Regresyonda Parametre Tahmininde Bayesci Bir Yaklaşım. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi (12), 15-22.
  • Chen, M.H., Shao, Q.M. and Ibrahim, J.G. (2000). Monte Carlo Methods in Bayesian Computation, New York: Springer-Verlag.
  • Chiodo, E., Mazzanti, G., Karimian, M. (2015). Bayes estimation of Inverse Weibull distribution for extreme wind speed prediction. 2015 International Conference on Clean Electrical Power (ICCEP), 639-646.
  • Congdon, P. (2001). Bayesian Statistical Modeling, John Wiley & Sons Ltd., West Sussex.
  • Congdon, P. (2003). Applied Bayesian Modeling, John Wiley & Sons Ltd., West Sussex.
  • Congdon, P. (2005). Bayesian Models for Categorical Data, John Wiley & Sons Ltd., West Sussex.
  • Ellah, A. H. (2012). Bayesian and Non-Bayesian Estimation of the Inverse Weibull Model Based on Generalized Order Statistics. Intelligent Information Management, 4, 23-31.
  • Elshahat, M.; Ismail, A. (2014). Quasi-Bayesian Estimation for Inverse Weibull Distribution. International Journal of Mathematics and Statistics Studies, 2(2), 64-75.
  • Erto, P. (1986). Properties and Identification of the Inverse Weibull: Unknown or Just forgotten. Quality and Reliability Engineering International, 9, 383-385.
  • Gelman, A., Carlin, J., Stern, H. and Rubin, D. (2004). Bayesian Data Analysis, Second Edition, London: Chapman & Hall.
  • Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice, London: Chapman & Hall.
  • Gül, H. H. (2023). Unit- Weibull Distribution: Different Method of Estimations. Karadeniz Fen Bilimleri Dergisi, 13(2), 547-560.
  • Johnson, N.; Kotz, S.; Balakrishnan, N. (1994). Continuous Univariate Distributions (Vol 1. b.). New York: John Wiley and Sons.
  • Keller, A.; Kamath, A. (1982). Alternative Reliability Models for Mechanical Systems. Proceeding of the 3rd International Conference on Reliability and Maintainability, 411-415.
  • Khan, S. M., Pasha, G. R., Pasha, A. H. (2008). Theoretical Analysis of Inverse Weibull Distribution. Wseas Transactions On Mathematics, 7 (2), Pages 30 – 38.
  • Köksal Babacan, E. (2024). Bayesian Estimation of Inverse Weibull Distribution Scale Parameter Under The Different Loss Functions. Sigma Journal of Engineering and Natural Sciences , vol.42, no.4, 1108-1115.
  • Kundu, D.; Howlader, H. (2010). Bayesian Inference and Prediction of the Inverse Weibull Distribution for Type-II Censored Data. Computational Statistics&Data Analysis, 54(6), 1547-1558.
  • Kundu, D.; Sultan, K.; Alsadat, N. (2013). Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring. Journal of Statistical Computation and Simulation, 84(10), 2248-2265.
  • Lindley, D.V. (1980) Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa 31, 223–245. https://doi.org/10.1007/BF02888353
  • Link ,W. A., Barker, R. J. (2010). Bayesian Inference With Ecological Applications, Academic Press, Boston, United States.
  • Loganathan, A.; Uma, M. (2017). Comparison of Estimation Methods for Inverse Weibull distribution. Global and Stochastic Analysis, 4(1), 83-93.
  • Mudasir, S.; Ahmed, A.; Ahmad, S. (2015). A Note on Bayesian Estimation of Inverse Weibull Distribution under LINEX and Quadratic Loss Functions. International Journal of Modern Mathematical Sciences, 13(2), 170-177.
  • Murthy, D.N. P; Bulmer, M.; Eccleston, J. A. (2004). Weibull model selection for reliability modelling, Reliability Engineering & System Safety, Volume 86, Issue 3, Pages 257-267,
  • Nelson, W. (1982). Apllied Life Data Analysis. New York: Wiley.
  • Öztürk, Z.; Cengiz, M. A. (2017). Bayesci Genelleştirilmiş Lineer Karma Modellerde Önsel Seçimleri ve Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 999-1010.
  • Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd edition. New York: SpringerVerlag.
  • Shuaib Khan, M., Pasha, G. R. , Hesham Pasha, A. (2008). Theoretical analysis of inverse weibull distribution WSEAS Transactions on Mathematics, Volume 7, Issue 2, Pages 30-38.
  • Singh, S. K.; Singh, U.; Sharma, V. K. (2013). Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution. Int J Syst Assur Eng Manag, 4(3), 241–248.
  • Singh, S. K.; Singh, U.; Sharma, V. K. (2013). Bayesian Prediction of Future Observations from Inverse Weibull Distribution Based on Type-II Hybrid Censored Sample. International Journal of Advanced Statistics and Probability, 1(2), 32-43.
  • Steyvers, M. (2015). Advanced Matlab:Exploratory Data Analysis and Computational Statistics.
  • Sultan, K. S. (2008). Bayesian Estimates Based on Record Values from the Inverse Weibull Lifetime Model. Model Quality Technology & Quantitative Management, 5(4), 363-374.
  • Sultan, K. S. (2010). Record Values from the Inverse Weibull Lifetime Model:Different Methods of Estimation. Intelligent Information Management, 2, 631-636.
  • Tanner, M.A. (1993). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, New York: Springer-Verlag.
  • Tasnim H.K. Al-Baldawi, Huda A. Rasheed, Nadia J. Al-Obedy. (2014). Bayes Estimators of the Scale Parameter of an Inverse Weibull Distribution under two different Loss Functions. Journal of Advances in Mathematics, 8(2), 1571-1577.
  • Vishwakarma, P. K., Kaushik, A., Pandey, A., Singh, U., Singh, S. K. (2018). Bayesian Estimation for Inverse Weibull Distribution Under Progressive Type-II Censored Data With Beta-Binomial Removals. Austrian Journal of Statistics, 47(1), 77–94. https://doi.org/10.17713/ajs.v47i1.578
  • Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18, 293-297.
  • Walsh, B. (2004). Markov Chain Monte Carlo http://nitro.biosci.arizona.edu/courses/EEB519A-2007/
  • Yao, W. Y.; Song, B. W.; Mao, Z. Y.; Le, H. Y. (2011). Parameter Estimations of Inverse Weibull Distribution. Advanced Materials Research, 199-200, 564-568.
  • Yahgmaei, F.; Babanezhad, M.; Moghadam, O. S. (2013). Bayesian Estimation of the Scale Parameter of Inverse Weibull Distribution under the Asymmetric Loss Functions. Journal of Probability and Statistics, Vol.2013,Article ID 890914, 8 pages.

Ters Weibull Dağılımında Parametre Tahmin Yöntemlerinin Karşılaştırılması Üzerine Bir Simülasyon Çalışması

Yıl 2025, Cilt: 15 Sayı: 3, 971 - 994, 15.09.2025
https://doi.org/10.31466/kfbd.1508353

Öz

Yaşam süresi verilerini analiz etmek için uygun bir model olan Ters Weibull dağılımı, faydalı ömür ve yıpranma periyotları gibi çeşitli özellikleri modellemek için kullanılabilir. Farklı birçok alanda uygulama olanağına sahip olması nedeniyle, Ters Weibull dağılımının parametrelerinin etkin bir şekilde tahmin edilmesi önemlidir. Ters Weibull dağılımının parametrelerini tahmin etmek için genellikle; en küçük kareler, en çok olabilirlik ve Bayes tahmin yöntemleri kullanılmaktadır. Bayes tahmin yönteminde klasik yaklaşımdan farklı olarak parametreler de birer rasgele değişken olarak düşünülür. Bu nedenle parametrelerin de kendilerine ait dağılımları vardır. Önsel dağılım olarak bilinen bu dağılımlar örneklem bilgisi ile güncellenerek sonsal dağılımlar elde edilir ve parametreye ilişkin tüm çıkarımlar bu sonsal dağılım kullanılarak yapılır. Fakat uygulamalarda sonsal dağılımın hesaplanmasında bazı zorluklarla karşılaşılır. Bu gibi durumlarda sonuç çıkarımı yapabilmek için sayısal integrasyon yöntemleri veya Markov Zinciri Monte Carlo yöntemleri olarak bilinen simülasyon yöntemleri kullanılır. Bu çalışmada, Ters Weibull dağılımının parametrelerini tahmin etmek için kullanılan yöntemler incelenmiş ve yapılan simülasyon çalışması ile bu yöntemler karşılaştırılmıştır. Tahmin yöntemlerini karşılaştırmak için hata kareler ortalaması, kök hata kareler ortalaması ve ortalama mutlak hata ölçütleri kullanılmıştır.

Kaynakça

  • Ahmad, K.; Ahmad, S.; Ahmed, A. (2015). Classical and Bayesian Approach in Estimation of Scale Parameter of Inverse Weibull Distribution. Mathematical Theory and Modeling, 5(13), 2224-5804.
  • Algarni, S., Afify, A. Z., Elbatal, I., Elgarhy, M. (2020). The Extended Inverse Weibull Distribution: Properties and Applications, Complexity, 3297693, 11 pages, https://doi.org/10.1155/2020/3297693
  • Algarni, A., Elgarhy, M., Almarashi, A. M., Fayomi, A. and El-Saeed, A., E. (2021) .Classical and Bayesian Estimation of the Inverse Weibull Distribution: Using Progressive Type-I Censoring Scheme, Hindawi Advances in Civil Engineering, Article ID 5701529, 15 pageshttps://doi.org/10.1155/2021/5701529
  • Calabria, R., Pulcini, G. (1990). On the Maximum Likelihood and Least Squares Estimation in the Inverse Weibull Distribution. Statistics Applicata, 2, 53-66.
  • Calabria, R., Pulcini, G. (1994). Bayes 2-Sample Prediction for the Inverse Weibull Distribution. Communications in Statistics-Theory&Methods, 23, 1811-1824.
  • Carriere, J. (1992). Parametric Models for Life Tables. Transactions of society Actuaries, 44, 77-100.
  • Cengiz, M. A., Terzi, E., Şenel, T., Murat, N. (2012). Lojistik Regresyonda Parametre Tahmininde Bayesci Bir Yaklaşım. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi (12), 15-22.
  • Chen, M.H., Shao, Q.M. and Ibrahim, J.G. (2000). Monte Carlo Methods in Bayesian Computation, New York: Springer-Verlag.
  • Chiodo, E., Mazzanti, G., Karimian, M. (2015). Bayes estimation of Inverse Weibull distribution for extreme wind speed prediction. 2015 International Conference on Clean Electrical Power (ICCEP), 639-646.
  • Congdon, P. (2001). Bayesian Statistical Modeling, John Wiley & Sons Ltd., West Sussex.
  • Congdon, P. (2003). Applied Bayesian Modeling, John Wiley & Sons Ltd., West Sussex.
  • Congdon, P. (2005). Bayesian Models for Categorical Data, John Wiley & Sons Ltd., West Sussex.
  • Ellah, A. H. (2012). Bayesian and Non-Bayesian Estimation of the Inverse Weibull Model Based on Generalized Order Statistics. Intelligent Information Management, 4, 23-31.
  • Elshahat, M.; Ismail, A. (2014). Quasi-Bayesian Estimation for Inverse Weibull Distribution. International Journal of Mathematics and Statistics Studies, 2(2), 64-75.
  • Erto, P. (1986). Properties and Identification of the Inverse Weibull: Unknown or Just forgotten. Quality and Reliability Engineering International, 9, 383-385.
  • Gelman, A., Carlin, J., Stern, H. and Rubin, D. (2004). Bayesian Data Analysis, Second Edition, London: Chapman & Hall.
  • Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice, London: Chapman & Hall.
  • Gül, H. H. (2023). Unit- Weibull Distribution: Different Method of Estimations. Karadeniz Fen Bilimleri Dergisi, 13(2), 547-560.
  • Johnson, N.; Kotz, S.; Balakrishnan, N. (1994). Continuous Univariate Distributions (Vol 1. b.). New York: John Wiley and Sons.
  • Keller, A.; Kamath, A. (1982). Alternative Reliability Models for Mechanical Systems. Proceeding of the 3rd International Conference on Reliability and Maintainability, 411-415.
  • Khan, S. M., Pasha, G. R., Pasha, A. H. (2008). Theoretical Analysis of Inverse Weibull Distribution. Wseas Transactions On Mathematics, 7 (2), Pages 30 – 38.
  • Köksal Babacan, E. (2024). Bayesian Estimation of Inverse Weibull Distribution Scale Parameter Under The Different Loss Functions. Sigma Journal of Engineering and Natural Sciences , vol.42, no.4, 1108-1115.
  • Kundu, D.; Howlader, H. (2010). Bayesian Inference and Prediction of the Inverse Weibull Distribution for Type-II Censored Data. Computational Statistics&Data Analysis, 54(6), 1547-1558.
  • Kundu, D.; Sultan, K.; Alsadat, N. (2013). Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring. Journal of Statistical Computation and Simulation, 84(10), 2248-2265.
  • Lindley, D.V. (1980) Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa 31, 223–245. https://doi.org/10.1007/BF02888353
  • Link ,W. A., Barker, R. J. (2010). Bayesian Inference With Ecological Applications, Academic Press, Boston, United States.
  • Loganathan, A.; Uma, M. (2017). Comparison of Estimation Methods for Inverse Weibull distribution. Global and Stochastic Analysis, 4(1), 83-93.
  • Mudasir, S.; Ahmed, A.; Ahmad, S. (2015). A Note on Bayesian Estimation of Inverse Weibull Distribution under LINEX and Quadratic Loss Functions. International Journal of Modern Mathematical Sciences, 13(2), 170-177.
  • Murthy, D.N. P; Bulmer, M.; Eccleston, J. A. (2004). Weibull model selection for reliability modelling, Reliability Engineering & System Safety, Volume 86, Issue 3, Pages 257-267,
  • Nelson, W. (1982). Apllied Life Data Analysis. New York: Wiley.
  • Öztürk, Z.; Cengiz, M. A. (2017). Bayesci Genelleştirilmiş Lineer Karma Modellerde Önsel Seçimleri ve Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 999-1010.
  • Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd edition. New York: SpringerVerlag.
  • Shuaib Khan, M., Pasha, G. R. , Hesham Pasha, A. (2008). Theoretical analysis of inverse weibull distribution WSEAS Transactions on Mathematics, Volume 7, Issue 2, Pages 30-38.
  • Singh, S. K.; Singh, U.; Sharma, V. K. (2013). Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution. Int J Syst Assur Eng Manag, 4(3), 241–248.
  • Singh, S. K.; Singh, U.; Sharma, V. K. (2013). Bayesian Prediction of Future Observations from Inverse Weibull Distribution Based on Type-II Hybrid Censored Sample. International Journal of Advanced Statistics and Probability, 1(2), 32-43.
  • Steyvers, M. (2015). Advanced Matlab:Exploratory Data Analysis and Computational Statistics.
  • Sultan, K. S. (2008). Bayesian Estimates Based on Record Values from the Inverse Weibull Lifetime Model. Model Quality Technology & Quantitative Management, 5(4), 363-374.
  • Sultan, K. S. (2010). Record Values from the Inverse Weibull Lifetime Model:Different Methods of Estimation. Intelligent Information Management, 2, 631-636.
  • Tanner, M.A. (1993). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, New York: Springer-Verlag.
  • Tasnim H.K. Al-Baldawi, Huda A. Rasheed, Nadia J. Al-Obedy. (2014). Bayes Estimators of the Scale Parameter of an Inverse Weibull Distribution under two different Loss Functions. Journal of Advances in Mathematics, 8(2), 1571-1577.
  • Vishwakarma, P. K., Kaushik, A., Pandey, A., Singh, U., Singh, S. K. (2018). Bayesian Estimation for Inverse Weibull Distribution Under Progressive Type-II Censored Data With Beta-Binomial Removals. Austrian Journal of Statistics, 47(1), 77–94. https://doi.org/10.17713/ajs.v47i1.578
  • Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18, 293-297.
  • Walsh, B. (2004). Markov Chain Monte Carlo http://nitro.biosci.arizona.edu/courses/EEB519A-2007/
  • Yao, W. Y.; Song, B. W.; Mao, Z. Y.; Le, H. Y. (2011). Parameter Estimations of Inverse Weibull Distribution. Advanced Materials Research, 199-200, 564-568.
  • Yahgmaei, F.; Babanezhad, M.; Moghadam, O. S. (2013). Bayesian Estimation of the Scale Parameter of Inverse Weibull Distribution under the Asymmetric Loss Functions. Journal of Probability and Statistics, Vol.2013,Article ID 890914, 8 pages.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Makaleler
Yazarlar

Esin Köksal Babacan 0000-0002-9649-5276

Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 1 Temmuz 2024
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Köksal Babacan, E. (2025). Ters Weibull Dağılımında Parametre Tahmin Yöntemlerinin Karşılaştırılması Üzerine Bir Simülasyon Çalışması. Karadeniz Fen Bilimleri Dergisi, 15(3), 971-994. https://doi.org/10.31466/kfbd.1508353