Araştırma Makalesi
BibTex RIS Kaynak Göster

Kendisi ve Tersi Yalınkat Fonksiyonların Balans Polinomları ile Tanımlanan Bazı Yeni Alt Sınıfları Üzerine

Yıl 2023, , 25 - 32, 30.06.2023
https://doi.org/10.55213/kmujens.1252471

Öz

Bu makalede, Balans polinomları kullanılarak kendisi ve tersi yalınkat olan analitik fonksiyonların iki yeni alt sınıfı tanıtılmıştır. Daha sonra, bu yeni sınıflara ait fonksiyonların ilk iki Taylor-Maclaurin katsayıları için katsayı tahminleri belirlenmiştir. Son olarak, tanımlanan sınıflardaki fonksiyonlar i¸cin Fekete-Szegö problemi ele alınıp incelenmiştir

Kaynakça

  • Behera A., Panda GK., On the square roots of triangular numbers, Fibonacci Quart., 37, 98–105, (1999).
  • Brannan D., Clunie J., Aspects of contemporary complex analysis, Academic Press, New York, (1980).
  • Brannan D., Taha TS., On some classes of bi-univalent functions, In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Math. Anal. Appl., 53–60, (1988).
  • Buyankara M., C¸ a˘glar M., Cotˆırl˘a LI., New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials, Axioms, 11(11), Art. 652, (2022).
  • Çağlar M., Cotˆırl˘a LI., Buyankara M., Fekete–Szeg¨o Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Symmetry, 14(8), Art. 1572, (2022).
  • Çağlar M., Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Bulgare Sci., 72, 1608–1615, (2019).
  • Çağlar M., Orhan H., Ya˘gmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, 1165–1171, (2013).
  • Davala RK., Panda GK., On sum and ratio formulas for balancing numbers, J. Indian Math. Soc. (N.S.), 82(1-2), 23–32,(2015).
  • Duren PL., Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, (1983).
  • Frasin BA., Swamy SR., Aldawish I., A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers, J. Funct. Spaces, 2021, Art. 4249509, (2021).
  • Frasin BA., Swamy SR., Nirmala J., Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Math., 32, 631–643, (2021).
  • Frontczak R., On balancing polynomials, Appl. Math. Sci., 13(2), 57–66, (2019).
  • Frontczak R., Baden-W¨urttemberg L., A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12(25), 2001–2008, (2018).
  • Frontczak R., Baden-W¨urttemberg L., Sums of balancing and Lucas-balancing numbers with binomial coefficients,Int. J. Math. Anal., 12(12), 585–594, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Subclasses of bi-univalent functions related to shell-like curves ¨connected with Fibonacci numbers, Acta Univ. Sapientiae Math., 10, 70–84, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Certain subclasses of bi-univalent functions related to ¨ k-Fibonacci numbers, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68, 1909–1921, (2019).
  • Keskin R., Karaatlı O., Some new properties of balancing numbers and square triangular numbers, J. Integer Seq.,15(1), 1–13, (2012).
  • Komatsu T., Panda GK., On several kinds of sums of balancing numbers, arXiv:1608.05918, (2016).
  • Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63–68, (1967).
  • Miller SS., Mocanu PT., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics,225, Marcel Dekker, Inc., New York, (2000).
  • Orhan H., Toklu E., Kadıo˘glu E., Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials, Turkish J. Math., 42(4), 1927–1940, (2018).
  • Patel BK., Irmak N., Ray PK., Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20(70), 59–72, (2018).
  • Ray PK., Some Congruences for Balancing and Lucas-Balancing Numbers and Their Applications, Integers, 14, A8,(2014).
  • Ray PK., On the properties of k-balancing numbers, Ain Shams Engineering Journal, 9(3), 395–402, (2018).
  • Ray PK., Balancing and Lucas-balancing sums by matrix methods, Math. Rep. (Bucur.), 17(2), 225–233, (2015).
  • Srivastava HM., Mishra AK., Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, 1188–1192, (2010).
  • Srivastava HM., Bulut S., C¸ a˘glar M., Ya˘gmur N., Coefficient estimates for a general subclass of analytic and biunivalent functions, Filomat, 27, 831–842, (2013).
  • Toklu E., A new subclass of bi-univalent functions defined by q-derivative, TWMS J. of Apl. & Eng. Math., 9(1), 84–90, (2019).
  • Toklu E., Aktaş İ., Sagsoz F., On new subclasses of bi-univalent functions defined by generalized S˘al˘agean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1), 776-783, (2019).
  • Zaprawa P., On the Fekete-Szeg¨o problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1), 169–178, (2014).

On some new subclasses of bi-univalent functions defined by Balancing polynomials

Yıl 2023, , 25 - 32, 30.06.2023
https://doi.org/10.55213/kmujens.1252471

Öz

In this paper, two new subclasses of holomorphic and bi-univalent functions are introduced by using Balancing polynomials. Then, coefficient estmations are determined for the first two coefficients of functions belonging to these new classses. Finally, the Fekete-Szeg¨o problem is handled for the functions in subclasses defined.

Kaynakça

  • Behera A., Panda GK., On the square roots of triangular numbers, Fibonacci Quart., 37, 98–105, (1999).
  • Brannan D., Clunie J., Aspects of contemporary complex analysis, Academic Press, New York, (1980).
  • Brannan D., Taha TS., On some classes of bi-univalent functions, In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Math. Anal. Appl., 53–60, (1988).
  • Buyankara M., C¸ a˘glar M., Cotˆırl˘a LI., New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials, Axioms, 11(11), Art. 652, (2022).
  • Çağlar M., Cotˆırl˘a LI., Buyankara M., Fekete–Szeg¨o Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Symmetry, 14(8), Art. 1572, (2022).
  • Çağlar M., Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Bulgare Sci., 72, 1608–1615, (2019).
  • Çağlar M., Orhan H., Ya˘gmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, 1165–1171, (2013).
  • Davala RK., Panda GK., On sum and ratio formulas for balancing numbers, J. Indian Math. Soc. (N.S.), 82(1-2), 23–32,(2015).
  • Duren PL., Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, (1983).
  • Frasin BA., Swamy SR., Aldawish I., A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers, J. Funct. Spaces, 2021, Art. 4249509, (2021).
  • Frasin BA., Swamy SR., Nirmala J., Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Math., 32, 631–643, (2021).
  • Frontczak R., On balancing polynomials, Appl. Math. Sci., 13(2), 57–66, (2019).
  • Frontczak R., Baden-W¨urttemberg L., A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12(25), 2001–2008, (2018).
  • Frontczak R., Baden-W¨urttemberg L., Sums of balancing and Lucas-balancing numbers with binomial coefficients,Int. J. Math. Anal., 12(12), 585–594, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Subclasses of bi-univalent functions related to shell-like curves ¨connected with Fibonacci numbers, Acta Univ. Sapientiae Math., 10, 70–84, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Certain subclasses of bi-univalent functions related to ¨ k-Fibonacci numbers, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68, 1909–1921, (2019).
  • Keskin R., Karaatlı O., Some new properties of balancing numbers and square triangular numbers, J. Integer Seq.,15(1), 1–13, (2012).
  • Komatsu T., Panda GK., On several kinds of sums of balancing numbers, arXiv:1608.05918, (2016).
  • Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63–68, (1967).
  • Miller SS., Mocanu PT., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics,225, Marcel Dekker, Inc., New York, (2000).
  • Orhan H., Toklu E., Kadıo˘glu E., Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials, Turkish J. Math., 42(4), 1927–1940, (2018).
  • Patel BK., Irmak N., Ray PK., Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20(70), 59–72, (2018).
  • Ray PK., Some Congruences for Balancing and Lucas-Balancing Numbers and Their Applications, Integers, 14, A8,(2014).
  • Ray PK., On the properties of k-balancing numbers, Ain Shams Engineering Journal, 9(3), 395–402, (2018).
  • Ray PK., Balancing and Lucas-balancing sums by matrix methods, Math. Rep. (Bucur.), 17(2), 225–233, (2015).
  • Srivastava HM., Mishra AK., Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, 1188–1192, (2010).
  • Srivastava HM., Bulut S., C¸ a˘glar M., Ya˘gmur N., Coefficient estimates for a general subclass of analytic and biunivalent functions, Filomat, 27, 831–842, (2013).
  • Toklu E., A new subclass of bi-univalent functions defined by q-derivative, TWMS J. of Apl. & Eng. Math., 9(1), 84–90, (2019).
  • Toklu E., Aktaş İ., Sagsoz F., On new subclasses of bi-univalent functions defined by generalized S˘al˘agean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1), 776-783, (2019).
  • Zaprawa P., On the Fekete-Szeg¨o problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1), 169–178, (2014).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Aktaş 0000-0003-4570-4485

İnci Karaman Bu kişi benim 0000-0002-8497-9716

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 17 Şubat 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aktaş, İ., & Karaman, İ. (2023). On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 5(1), 25-32. https://doi.org/10.55213/kmujens.1252471
AMA Aktaş İ, Karaman İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. KMUJENS. Haziran 2023;5(1):25-32. doi:10.55213/kmujens.1252471
Chicago Aktaş, İbrahim, ve İnci Karaman. “On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 5, sy. 1 (Haziran 2023): 25-32. https://doi.org/10.55213/kmujens.1252471.
EndNote Aktaş İ, Karaman İ (01 Haziran 2023) On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 5 1 25–32.
IEEE İ. Aktaş ve İ. Karaman, “On some new subclasses of bi-univalent functions defined by Balancing polynomials”, KMUJENS, c. 5, sy. 1, ss. 25–32, 2023, doi: 10.55213/kmujens.1252471.
ISNAD Aktaş, İbrahim - Karaman, İnci. “On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 5/1 (Haziran 2023), 25-32. https://doi.org/10.55213/kmujens.1252471.
JAMA Aktaş İ, Karaman İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. KMUJENS. 2023;5:25–32.
MLA Aktaş, İbrahim ve İnci Karaman. “On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, c. 5, sy. 1, 2023, ss. 25-32, doi:10.55213/kmujens.1252471.
Vancouver Aktaş İ, Karaman İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. KMUJENS. 2023;5(1):25-32.

KMUJENS’nde yayınlanan makaleler Creative Commons Atıf-Gayriticari 4.0 Uluslararası Lisansı (CC BY-NC) ile lisanslanmıştır. İçeriğin ticari amaçlı kullanımı yasaktır. Dergide yer alan makaleler, yazarına ve orijinal kaynağa atıfta bulunulduğu sürece kullanılabilir.