Comparison of Flight Performances of Unmanned Air Vehicle with Six Rotors and Eight Rotors Under Different Disturbance Effects
Year 2020,
, 552 - 562, 03.09.2020
Şahin Yıldırım
,
Nihat Çabuk
,
Veli Bakırcıoğlu
Abstract
In this study, six-rotors and eight-rotors unmanned aerial vehicles have been compared
under disruptive effect. To determine the effect of the difference of rotor number on the flight performance,
the same controller was used in both types of vehicles. Proportional-Integral-Derivative control method,
which is one of the traditional control methods, was used and control parameters were determined by
observational study. A comparison of these two air vehicles was made by taking into account the errors
trajectory tracking for three axes. The comparison results are presented numerically. According to the
results, it was observed that the UAV with eight rotors allowed a more stable flight as the disturbance
effect increased compared to the UAV with six rotors.
Project Number
FBA-2017-7393
References
- Akgül, M., Yurtseven, H., Demir, M., Akay, A. E., Gülci, S., & Öztürk, T., 2016, “İnsansız Hava Araçları ile
Yüksek Hassasiyette Sayısal Yükseklik Modeli Üretimi Ve Ormancılıkta Kullanım Olanakları”,
İstanbul Üniversitesi Orman Fakültesi Dergisi, 66(1), ss.104–118.
- Antonelli, G., Cataldi, E., Arrichiello, F., Robuffo Giordano, P., Chiaverini, S., & Franchi, A., 2018,
“Adaptive Trajectory Tracking for Quadrotor MAVs in Presence of Parameter Uncertainties and
External Disturbances”, IEEE Transactions on Control Systems Technology, 26(1), ss. 248–254.
- Aykut, N. O., 2019, “İnsansız Hava Araçlarının Kıyı Çizgisinin Belirlenmesinde Kullanılabilirliğinin
Araştırılması”, Geomatik, 4(2), ss. 141–146.
- Badr, S., Mehrez, O., & Kabeel, A. E., 2019, “A design modification for a quadrotor UAV: modeling, control
and implementation”. Advanced Robotics, 33(1), ss. 13–32.
- Bangura, M., & Mahony, R., 2017, “Thrust Control for Multirotor Aerial Vehicles”, IEEE Transactions on
Robotics, 33(2), ss. 390–405.
- Brito, V., Brito, A., Palma, L. B., & Gil, P., 2018, “Quadcopter Control Approaches and Performance
Analysis”, In Proceedings of the 15th International Conference on Informatics in Control,
Automation and Robotics (Vol. 1, pp. 86–93). SCITEPRESS - Science and Technology
Publications.
- Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y., & Weber, P., 2014, “Optimal reliability design
for over-actuated systems based on the MIT rule: Application to an octocopter helicopter
testbed”, Reliability Engineering and System Safety, 132, ss. 196–206.
- Criado, R. M., & Rubio, F. R., 2015, “Autonomous path tracking control design for a comercial
quadcopter”, IFAC-PapersOnLine, 28(9), ss. 73–78.
- Değirmen, S., Çavdur, F., & Sebatlı, A., 2018, “Afet OperasyonlarYöneti̇mi̇ndeİnsansiz Hava Araçlarinin
Kullanimi: Gözetleme Operasyonlarİçi̇n Rota Planlama”, Uludağ University Journal of The
Faculty of Engineering, 23(4), ss. 11–26.
- Eliker, K., Zhang, G., Grouni, S., & Zhang, W., 2018, “An Optimization Problem for Quadcopter Reference
Flight Trajectory Generation”, Journal of Advanced Transportation, 2018, ss. 1–15.
- Hu, D., Wang, H., & Zhu, Q., 2016, “Emergency Control of AR Drone Quadrotor UAV Suffering a Total
Loss of One Rotor”, IEEE Photonics Journal, 8(2), ss. 1–8.
- Lin, C. E., & Supsukbaworn, T., 2017, “Development of Dual Power Multirotor System”, International
Journal of Aerospace Engineering, 2017, ss. 1–19.
- López-Estrada, F. R., Ponsart, J.-C., Theilliol, D., Zhang, Y., & Astorga-Zaragoza, C.-M., 2016, “LPV Model-
Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV”, Journal of
Intelligent & Robotic Systems, 84(1–4), ss. 163–177.
- Moussid, M., Idalene, A., Sayouti, A., & Medromi, H., 2015, “Autonomous HexaRotor Arial Dynamic
Modeling and a Review of Control Algorithms”, International Research Journal of Engineering
and Technology (IRJET), ss. 1197–1204.
- Mueller, M. W., & D’Andrea, R., 2014, “Stability and control of a quadrocopter despite the complete loss
of one, two, or three propellers”, Proceedings - IEEE International Conference on Robotics and
Automation, ss. 45–52.
- Muliadi, J., & Kusumoputro, B., 2018, “Neural Network Control System of UAV Altitude Dynamics and
Its Comparison with the PID Control System”, Journal of Advanced Transportation, 2018(D), ss.
1–18.
- Nguyen, N. P., & Hong, S. K., 2018, “Fault-tolerant Control of Quadcopter UAVs Using Robust Adaptive
Sliding Mode Approach”, Energies, 12(1), ss. 1-15.
- Niemiec, R., & Gandhi, F., 2017, “Multirotor Controls, Trim, and Autonomous Flight Dynamics of Plusand
Cross-Quadcopters”, Journal of Aircraft, 54(5), ss. 1910–1920.
- Russell, C., Jung, J., Willink, G., & Glasner, B., 2016, “Wind Tunnel and Hover Performance Test Results
for Multicopter UAS Vehicles”, In Proceedings of the AHS International 72nd Annual Forum,
ss. 3448–3467.
- Solovyev Viktor, V., Finaev Valery, I., Zargaryan Yuri, A., Shapovalov Igor, O., & Beloglazov Denis, A.,
2006, “Simuation of wind effect on quadrotor flight”, ARPN Journal of Engineering and Applied
Sciences, 10(4), ss. 1535-1538.
- Yılmaz, H. M., Mutluoğlu, Ö., Ulvi, A., Yaman, A., & Bilgilioğlu, S. S., 2018, “İnsansız Hava Aracı ile
Ortofoto Üretimi ve Aksaray Üniversitesi Kampüsü Örneği”, Geomatik, 3(2), ss. 129–136.
- Zabunov, S., & Mardirossian, G., 2018, “Innovative Dodecacopter Design – Bulgarian Knight”,
International Journal of Aviation, Aeronautics, and Aerospace, 5(4), ss. 1-16.
ALTI ROTORLU VE SEKİZ ROTORLU İNSANSIZ HAVA ARAÇLARININ FARKLI BOZUCU ETKİ ALTINDA UÇUŞ PERFORMANSLARININ KARŞILAŞTIRILMASI
Year 2020,
, 552 - 562, 03.09.2020
Şahin Yıldırım
,
Nihat Çabuk
,
Veli Bakırcıoğlu
Abstract
Bu çalışmada, altı rotorlu ve sekiz rotorlu iki tip insansız hava aracın (İHA) bozucu etki altında
performanslarının karşılaştırılması için benzetim gerçekleştirilmiştir. Rotor sayısının farklılığının uçuş
performansına etkisinin belirlenmesi esasına dayanan bu çalışmada her iki tip araç için aynı kontrolcü
kullanılmıştır. Geleneksel kontrol yöntemlerinden olan Oransal-İntegral-Türevsel (PID) kontrol yöntemi
kullanılan bu çalışmada kontrol parametreleri gözleme dayalı çalışmayla belirlenmiştir. Takip edilmesi
beklenen bir yörünge için oluşan hatalar dikkate alınarak bu iki hava aracının performanslarının
karşılaştırması gerçekleştirilmiştir. Karşılaştırma sonuçları sayısal olarak sunulmuştur. Elde edilen
sonuçlara göre, sekiz rotorlu hava aracının altı rotorlu olana göre bozucu etki arttıkça daha kararlı bir uçuş
sergilediği gözlemlenmiştir.
Supporting Institution
Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
FBA-2017-7393
Thanks
Bu çalışma FBA-2017-7393 kodlu proje kapsamında Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.
References
- Akgül, M., Yurtseven, H., Demir, M., Akay, A. E., Gülci, S., & Öztürk, T., 2016, “İnsansız Hava Araçları ile
Yüksek Hassasiyette Sayısal Yükseklik Modeli Üretimi Ve Ormancılıkta Kullanım Olanakları”,
İstanbul Üniversitesi Orman Fakültesi Dergisi, 66(1), ss.104–118.
- Antonelli, G., Cataldi, E., Arrichiello, F., Robuffo Giordano, P., Chiaverini, S., & Franchi, A., 2018,
“Adaptive Trajectory Tracking for Quadrotor MAVs in Presence of Parameter Uncertainties and
External Disturbances”, IEEE Transactions on Control Systems Technology, 26(1), ss. 248–254.
- Aykut, N. O., 2019, “İnsansız Hava Araçlarının Kıyı Çizgisinin Belirlenmesinde Kullanılabilirliğinin
Araştırılması”, Geomatik, 4(2), ss. 141–146.
- Badr, S., Mehrez, O., & Kabeel, A. E., 2019, “A design modification for a quadrotor UAV: modeling, control
and implementation”. Advanced Robotics, 33(1), ss. 13–32.
- Bangura, M., & Mahony, R., 2017, “Thrust Control for Multirotor Aerial Vehicles”, IEEE Transactions on
Robotics, 33(2), ss. 390–405.
- Brito, V., Brito, A., Palma, L. B., & Gil, P., 2018, “Quadcopter Control Approaches and Performance
Analysis”, In Proceedings of the 15th International Conference on Informatics in Control,
Automation and Robotics (Vol. 1, pp. 86–93). SCITEPRESS - Science and Technology
Publications.
- Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y., & Weber, P., 2014, “Optimal reliability design
for over-actuated systems based on the MIT rule: Application to an octocopter helicopter
testbed”, Reliability Engineering and System Safety, 132, ss. 196–206.
- Criado, R. M., & Rubio, F. R., 2015, “Autonomous path tracking control design for a comercial
quadcopter”, IFAC-PapersOnLine, 28(9), ss. 73–78.
- Değirmen, S., Çavdur, F., & Sebatlı, A., 2018, “Afet OperasyonlarYöneti̇mi̇ndeİnsansiz Hava Araçlarinin
Kullanimi: Gözetleme Operasyonlarİçi̇n Rota Planlama”, Uludağ University Journal of The
Faculty of Engineering, 23(4), ss. 11–26.
- Eliker, K., Zhang, G., Grouni, S., & Zhang, W., 2018, “An Optimization Problem for Quadcopter Reference
Flight Trajectory Generation”, Journal of Advanced Transportation, 2018, ss. 1–15.
- Hu, D., Wang, H., & Zhu, Q., 2016, “Emergency Control of AR Drone Quadrotor UAV Suffering a Total
Loss of One Rotor”, IEEE Photonics Journal, 8(2), ss. 1–8.
- Lin, C. E., & Supsukbaworn, T., 2017, “Development of Dual Power Multirotor System”, International
Journal of Aerospace Engineering, 2017, ss. 1–19.
- López-Estrada, F. R., Ponsart, J.-C., Theilliol, D., Zhang, Y., & Astorga-Zaragoza, C.-M., 2016, “LPV Model-
Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV”, Journal of
Intelligent & Robotic Systems, 84(1–4), ss. 163–177.
- Moussid, M., Idalene, A., Sayouti, A., & Medromi, H., 2015, “Autonomous HexaRotor Arial Dynamic
Modeling and a Review of Control Algorithms”, International Research Journal of Engineering
and Technology (IRJET), ss. 1197–1204.
- Mueller, M. W., & D’Andrea, R., 2014, “Stability and control of a quadrocopter despite the complete loss
of one, two, or three propellers”, Proceedings - IEEE International Conference on Robotics and
Automation, ss. 45–52.
- Muliadi, J., & Kusumoputro, B., 2018, “Neural Network Control System of UAV Altitude Dynamics and
Its Comparison with the PID Control System”, Journal of Advanced Transportation, 2018(D), ss.
1–18.
- Nguyen, N. P., & Hong, S. K., 2018, “Fault-tolerant Control of Quadcopter UAVs Using Robust Adaptive
Sliding Mode Approach”, Energies, 12(1), ss. 1-15.
- Niemiec, R., & Gandhi, F., 2017, “Multirotor Controls, Trim, and Autonomous Flight Dynamics of Plusand
Cross-Quadcopters”, Journal of Aircraft, 54(5), ss. 1910–1920.
- Russell, C., Jung, J., Willink, G., & Glasner, B., 2016, “Wind Tunnel and Hover Performance Test Results
for Multicopter UAS Vehicles”, In Proceedings of the AHS International 72nd Annual Forum,
ss. 3448–3467.
- Solovyev Viktor, V., Finaev Valery, I., Zargaryan Yuri, A., Shapovalov Igor, O., & Beloglazov Denis, A.,
2006, “Simuation of wind effect on quadrotor flight”, ARPN Journal of Engineering and Applied
Sciences, 10(4), ss. 1535-1538.
- Yılmaz, H. M., Mutluoğlu, Ö., Ulvi, A., Yaman, A., & Bilgilioğlu, S. S., 2018, “İnsansız Hava Aracı ile
Ortofoto Üretimi ve Aksaray Üniversitesi Kampüsü Örneği”, Geomatik, 3(2), ss. 129–136.
- Zabunov, S., & Mardirossian, G., 2018, “Innovative Dodecacopter Design – Bulgarian Knight”,
International Journal of Aviation, Aeronautics, and Aerospace, 5(4), ss. 1-16.