Araştırma Makalesi
BibTex RIS Kaynak Göster

Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells

Yıl 2025, Cilt: 11 Sayı: 2, 70 - 77, 27.05.2025
https://doi.org/10.30934/kusbed.1678429

Öz

Objective: Cisplatin is a key component in cancer treatment, but its effectiveness can be limited by dose related toxicities. Combining it with natural compounds such as arbutin offers a promising approach to improve treatment outcomes while reducing side effects. This study aimed to explore the combined apoptotic effects of arbutin and cisplatin in MCF-7 breast cancer cells, specifically focusing on mitochondrial gene expression.
Methods: MCF-7 cells were treated for 48 hours with arbutin, cisplatin, or a combination of both at fixed ratios. Cytotoxicity and synergy were evaluated using the Chou-Talalay median-effect method. Nuclear morphology, indicative of apoptosis, was assessed through Hoechst 33342 staining. Gene expression analysis targeted mitochondrial dynamics (DRP1, Fis1, MFN1, MFN2), oxidative stress markers (SOD2, GPx), apoptosis indicators (Bcl2), autophagy (Beclin1), and prostaglandin pathways (PGF2α, PGF2β), with results normalized to β-actin.
Results: The combination therapy significantly enhanced cytotoxicity compared to individual treatments (Combination Index <1). Hoechst staining revealed increased nuclear condensation and fragmentation, clear indicators of apoptosis. Among the genes analyzed, only PGF2β showed a significant downregulation in cells treated with the combination (p<0.05). Trends indicated elevated levels of DRP1 and Fis1, while MFN1 and MFN2 levels were decreased, suggesting a shift towards mitochondrial fragmentation, despite the results not reaching statistical significance.
Conclusion: The combination of arbutin and cisplatin promotes apoptosis in MCF-7 cells, potentially due to changes in mitochondrial dynamics. These findings indicate that arbutin may enhance the efficacy of cisplatin, potentially allowing for reduced cisplatin doses and a lower risk of side effects.

Kaynakça

  • Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237(3):219–227. doi:10.1016/j.toxlet.2015.06.012
  • Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–1883. doi:10.1038/onc.2011.384
  • Yedjou CG, Izevbigie EB, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy (Review). Molecules. 2022;27(9):2797. doi:10.3390/molecules27092797
  • Satar NA, Abdullah S, Ideris A, et al. Synergistic roles of curcumin in sensitising the cisplatin effect on a cancer stem cell-like population in NSCLC. Molecules. 2021;26(4):1056. doi:10.3390/molecules26041056
  • Nahar L, Sarker SD, Ul-Haq I, et al. Arbutin: Occurrence in Plants, and Its Potential as an Anticancer Agent. Molecules. 2022;27(24):8786. doi:10.3390/molecules27248786
  • Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel). 2021;10(7):1129. doi:10.3390/antiox10071129
  • Demirtaş Korkmaz F, Düzgün Z, Deveci Özkan A. Thiostrepton modulates TLR4 expression and induces apoptosis in MDA-MB-231 cells: an in vitro and in silico analysis. Meandros Med Dent J. 2024;25(3):209–221. doi:10.69601/meandrosmdj.1540223
  • Lee HJ, Kim KW. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated microglial cells. Inflamm Res. 2012;61(8):817-825. doi:10.1007/s00011-012-0474-2
  • Jiang LY, Yang B, Fu M. Pro-apoptotic effects of arbutin and its acylated derivatives on murine melanoma cells. Int J Mol Med. 2021;47(2):1048–1054. doi:10.3892/ijmm.2020.4828
  • Hazman Ö, Tetik S, Gürel A. Two faces of arbutin in hepatocellular carcinoma (HepG2) cells: Anticarcinogenic effect in high concentration and protective effect against cisplatin toxicity in low concentration. Biologia (Bratisl). 2022;77(1):225–239. doi:10.1007/s11756-021-00900-0
  • Safari H, Hajialyani M, Naseri R, et al. Arbutin decreases intracellular ROS and induces apoptosis in prostate cancer cells (LNCaP) while downregulating IL-1β and TNF-α. J Food Biochem. 2020;44(10):e13360. doi:10.1111/jfbc.13360
  • Zeng XT, Zeng L, Wang W. Anticancer effect of arbutin on diethylnitrosamine-induced liver carcinoma in rats via the GRP and GADD pathway. J Environ Pathol Toxicol Oncol. 2022;41(1):15–26. doi:10.1615/JEnvironPatholToxicolOncol.2021039472
  • Terzi E, Bostancı MS, Armutak EI, et al. β-Arbutin and cisplatin: A combined approach to modulating apoptosis, cell viability, and migration in bladder cancer cells. Toxicol In Vitro. 2024;104:105985. doi:10.1016/j.tiv.2024.105985
  • Okkay IF, Karadayi K, Uzunhisarcikli M, et al. Arbutin abrogates cisplatin-induced hepatotoxicity via Nrf2/HO-1 upregulation and suppression of NF-κB/iNOS/TNF-α and Bax/Bcl-2 pathways in rats. Toxicol Res. 2024;10(3):523–533. doi:10.1093/toxres/tfae075
  • Xie W, Zhu Y, Zhou Q, et al. Resveratrol and cisplatin synergistically induce apoptosis via autophagy-mediated pathway in A549 lung cancer cells. Biochem Biophys Res Commun. 2016;473(4):1215–1220. doi:10.1016/j.bbrc.2016.04.064
  • Kilic U, Gok O, Elibol E, et al. Epigallocatechin gallate enhances cisplatin sensitivity in human cervical cancer cells. Front Nutr. 2014;1:28. doi:10.3389/fnut.2014.00028
  • Daker M, Ahmad M, Khoo AS, et al. Quercetin-induced inhibition and synergistic activity with cisplatin in nasopharyngeal carcinoma cells. Cancer Cell Int. 2012;12:34. doi:10.1186/1475-2867-12-34
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi:10.1080/01926230701320337
  • Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-446. doi:10.1158/0008-5472.CAN-09-1947
  • Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1 in mitochondrial fission: implications for apoptosis. J Biol Chem. 2001;276(10):8068-8074. doi:10.1074/jbc.M008863200
  • Han XJ, Lu YF, Li SA, et al. Mitochondrial dynamics regulates hypoxia-induced migration and chemosensitivity of breast cancer cells. Int J Oncol. 2015;46(2):691-700.
  • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872-884. doi:10.1038/nrm3013
  • Qualtrough D, Buda A, Ordonez-Moran P, et al. Prostaglandin F2α stimulates motility and invasion in colorectal tumor cells. Int J Cancer. 2007;121(4):734–740.
  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647-656. doi:10.1038/nrc883
  • Hazman O, Sonmez MF, Cetinkaya A, Yilmaz S. Arbutin induces apoptosis and affects the Bax/Bcl-2 ratio in LNCaP prostate cancer cells. Cell J. 2021;23(1):108-117.
  • Xu L, Yang M, Huang J, et al. Beclin-1: a therapeutic target at the intersection of autophagy and cancer. Front Immunol. 2021;12:728191.
  • Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6(8):657-663. doi:10.1038/nrm1697
  • James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mitochondrial fission machinery, independently of Bax/Bak-mediated apoptotic pathways. J Biol Chem. 2003;278(39):36373-36379. doi:10.1074/jbc.M303758200
  • Kolac UK, Donmez Yalcin G, Yalcin A. Chemical inhibition of mitochondrial fission improves insulin signaling and subdues hyperglycemia-induced stress in placental trophoblast cells. Mol Biol Rep. 2023;50(1):493-506. doi:10.1007/s11033-022-07959-0
  • Yang Z, He J, Zhang M, et al. Arbutin exerts anticancer effects against C6 glioma by excessive ROS generation and mitochondrial membrane disruption. J Biochem Mol Toxicol. 2021;35(9):e22857.
  • Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273(16):9357-9360. doi:10.1074/jbc.273.16.935

Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells

Yıl 2025, Cilt: 11 Sayı: 2, 70 - 77, 27.05.2025
https://doi.org/10.30934/kusbed.1678429

Öz

Objective: Cisplatin is a key component in cancer treatment, but its effectiveness can be limited by dose related toxicities. Combining it with natural compounds such as arbutin offers a promising approach to improve treatment outcomes while reducing side effects. This study aimed to explore the combined apoptotic effects of arbutin and cisplatin in MCF-7 breast cancer cells, specifically focusing on mitochondrial gene expression.
Methods: MCF-7 cells were treated for 48 hours with arbutin, cisplatin, or a combination of both at fixed ratios. Cytotoxicity and synergy were evaluated using the Chou-Talalay median-effect method. Nuclear morphology, indicative of apoptosis, was assessed through Hoechst 33342 staining. Gene expression analysis targeted mitochondrial dynamics (DRP1, Fis1, MFN1, MFN2), oxidative stress markers (SOD2, GPx), apoptosis indicators (Bcl2), autophagy (Beclin1), and prostaglandin pathways (PGF2α, PGF2β), with results normalized to β-actin.
Results: The combination therapy significantly enhanced cytotoxicity compared to individual treatments (Combination Index <1). Hoechst staining revealed increased nuclear condensation and fragmentation, clear indicators of apoptosis. Among the genes analyzed, only PGF2β showed a significant downregulation in cells treated with the combination (p<0.05). Trends indicated elevated levels of DRP1 and Fis1, while MFN1 and MFN2 levels were decreased, suggesting a shift towards mitochondrial fragmentation, despite the results not reaching statistical significance.
Conclusion: The combination of arbutin and cisplatin promotes apoptosis in MCF-7 cells, potentially due to changes in mitochondrial dynamics. These findings indicate that arbutin may enhance the efficacy of cisplatin, potentially allowing for reduced cisplatin doses and a lower risk of side effects.

Kaynakça

  • Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237(3):219–227. doi:10.1016/j.toxlet.2015.06.012
  • Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–1883. doi:10.1038/onc.2011.384
  • Yedjou CG, Izevbigie EB, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy (Review). Molecules. 2022;27(9):2797. doi:10.3390/molecules27092797
  • Satar NA, Abdullah S, Ideris A, et al. Synergistic roles of curcumin in sensitising the cisplatin effect on a cancer stem cell-like population in NSCLC. Molecules. 2021;26(4):1056. doi:10.3390/molecules26041056
  • Nahar L, Sarker SD, Ul-Haq I, et al. Arbutin: Occurrence in Plants, and Its Potential as an Anticancer Agent. Molecules. 2022;27(24):8786. doi:10.3390/molecules27248786
  • Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel). 2021;10(7):1129. doi:10.3390/antiox10071129
  • Demirtaş Korkmaz F, Düzgün Z, Deveci Özkan A. Thiostrepton modulates TLR4 expression and induces apoptosis in MDA-MB-231 cells: an in vitro and in silico analysis. Meandros Med Dent J. 2024;25(3):209–221. doi:10.69601/meandrosmdj.1540223
  • Lee HJ, Kim KW. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated microglial cells. Inflamm Res. 2012;61(8):817-825. doi:10.1007/s00011-012-0474-2
  • Jiang LY, Yang B, Fu M. Pro-apoptotic effects of arbutin and its acylated derivatives on murine melanoma cells. Int J Mol Med. 2021;47(2):1048–1054. doi:10.3892/ijmm.2020.4828
  • Hazman Ö, Tetik S, Gürel A. Two faces of arbutin in hepatocellular carcinoma (HepG2) cells: Anticarcinogenic effect in high concentration and protective effect against cisplatin toxicity in low concentration. Biologia (Bratisl). 2022;77(1):225–239. doi:10.1007/s11756-021-00900-0
  • Safari H, Hajialyani M, Naseri R, et al. Arbutin decreases intracellular ROS and induces apoptosis in prostate cancer cells (LNCaP) while downregulating IL-1β and TNF-α. J Food Biochem. 2020;44(10):e13360. doi:10.1111/jfbc.13360
  • Zeng XT, Zeng L, Wang W. Anticancer effect of arbutin on diethylnitrosamine-induced liver carcinoma in rats via the GRP and GADD pathway. J Environ Pathol Toxicol Oncol. 2022;41(1):15–26. doi:10.1615/JEnvironPatholToxicolOncol.2021039472
  • Terzi E, Bostancı MS, Armutak EI, et al. β-Arbutin and cisplatin: A combined approach to modulating apoptosis, cell viability, and migration in bladder cancer cells. Toxicol In Vitro. 2024;104:105985. doi:10.1016/j.tiv.2024.105985
  • Okkay IF, Karadayi K, Uzunhisarcikli M, et al. Arbutin abrogates cisplatin-induced hepatotoxicity via Nrf2/HO-1 upregulation and suppression of NF-κB/iNOS/TNF-α and Bax/Bcl-2 pathways in rats. Toxicol Res. 2024;10(3):523–533. doi:10.1093/toxres/tfae075
  • Xie W, Zhu Y, Zhou Q, et al. Resveratrol and cisplatin synergistically induce apoptosis via autophagy-mediated pathway in A549 lung cancer cells. Biochem Biophys Res Commun. 2016;473(4):1215–1220. doi:10.1016/j.bbrc.2016.04.064
  • Kilic U, Gok O, Elibol E, et al. Epigallocatechin gallate enhances cisplatin sensitivity in human cervical cancer cells. Front Nutr. 2014;1:28. doi:10.3389/fnut.2014.00028
  • Daker M, Ahmad M, Khoo AS, et al. Quercetin-induced inhibition and synergistic activity with cisplatin in nasopharyngeal carcinoma cells. Cancer Cell Int. 2012;12:34. doi:10.1186/1475-2867-12-34
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi:10.1080/01926230701320337
  • Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-446. doi:10.1158/0008-5472.CAN-09-1947
  • Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1 in mitochondrial fission: implications for apoptosis. J Biol Chem. 2001;276(10):8068-8074. doi:10.1074/jbc.M008863200
  • Han XJ, Lu YF, Li SA, et al. Mitochondrial dynamics regulates hypoxia-induced migration and chemosensitivity of breast cancer cells. Int J Oncol. 2015;46(2):691-700.
  • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872-884. doi:10.1038/nrm3013
  • Qualtrough D, Buda A, Ordonez-Moran P, et al. Prostaglandin F2α stimulates motility and invasion in colorectal tumor cells. Int J Cancer. 2007;121(4):734–740.
  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647-656. doi:10.1038/nrc883
  • Hazman O, Sonmez MF, Cetinkaya A, Yilmaz S. Arbutin induces apoptosis and affects the Bax/Bcl-2 ratio in LNCaP prostate cancer cells. Cell J. 2021;23(1):108-117.
  • Xu L, Yang M, Huang J, et al. Beclin-1: a therapeutic target at the intersection of autophagy and cancer. Front Immunol. 2021;12:728191.
  • Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6(8):657-663. doi:10.1038/nrm1697
  • James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mitochondrial fission machinery, independently of Bax/Bak-mediated apoptotic pathways. J Biol Chem. 2003;278(39):36373-36379. doi:10.1074/jbc.M303758200
  • Kolac UK, Donmez Yalcin G, Yalcin A. Chemical inhibition of mitochondrial fission improves insulin signaling and subdues hyperglycemia-induced stress in placental trophoblast cells. Mol Biol Rep. 2023;50(1):493-506. doi:10.1007/s11033-022-07959-0
  • Yang Z, He J, Zhang M, et al. Arbutin exerts anticancer effects against C6 glioma by excessive ROS generation and mitochondrial membrane disruption. J Biochem Mol Toxicol. 2021;35(9):e22857.
  • Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273(16):9357-9360. doi:10.1074/jbc.273.16.935
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Özgün Araştırma
Yazarlar

Mahmut Alp Kılıç 0000-0003-2645-1988

Özlem Bozkurt Girit 0000-0003-0837-7374

Umut Kerem Kolaç 0000-0003-0266-9069

Bakiye Goker Bagca 0000-0002-5714-7455

Yayımlanma Tarihi 27 Mayıs 2025
Gönderilme Tarihi 17 Nisan 2025
Kabul Tarihi 5 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Kılıç, M. A., Bozkurt Girit, Ö., Kolaç, U. K., Goker Bagca, B. (2025). Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 11(2), 70-77. https://doi.org/10.30934/kusbed.1678429
AMA Kılıç MA, Bozkurt Girit Ö, Kolaç UK, Goker Bagca B. Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells. KOU Sag Bil Derg. Mayıs 2025;11(2):70-77. doi:10.30934/kusbed.1678429
Chicago Kılıç, Mahmut Alp, Özlem Bozkurt Girit, Umut Kerem Kolaç, ve Bakiye Goker Bagca. “Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 11, sy. 2 (Mayıs 2025): 70-77. https://doi.org/10.30934/kusbed.1678429.
EndNote Kılıç MA, Bozkurt Girit Ö, Kolaç UK, Goker Bagca B (01 Mayıs 2025) Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 11 2 70–77.
IEEE M. A. Kılıç, Ö. Bozkurt Girit, U. K. Kolaç, ve B. Goker Bagca, “Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells”, KOU Sag Bil Derg, c. 11, sy. 2, ss. 70–77, 2025, doi: 10.30934/kusbed.1678429.
ISNAD Kılıç, Mahmut Alp vd. “Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 11/2 (Mayıs2025), 70-77. https://doi.org/10.30934/kusbed.1678429.
JAMA Kılıç MA, Bozkurt Girit Ö, Kolaç UK, Goker Bagca B. Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells. KOU Sag Bil Derg. 2025;11:70–77.
MLA Kılıç, Mahmut Alp vd. “Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, c. 11, sy. 2, 2025, ss. 70-77, doi:10.30934/kusbed.1678429.
Vancouver Kılıç MA, Bozkurt Girit Ö, Kolaç UK, Goker Bagca B. Synergistic Apoptotic Effects of Cisplatin and Arbutin in MCF-7 Breast Cancer Cells. KOU Sag Bil Derg. 2025;11(2):70-7.