Araştırma Makalesi
BibTex RIS Kaynak Göster

Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması

Yıl 2019, , 268 - 276, 30.09.2019
https://doi.org/10.30607/kvj.532206

Öz

Bu araştırma ile neonatal dönemde ishal semptomu gösteren
buzağıların plazma vitamin D3 ve fibrinojen konsantrasyonları
arasındaki ilişkinin belirlenmesi amaçlandı. Bu kapsamda neonatal ishalli
(n=100) ve sağlıklı (n=20) buzağılar araştırmaya dahil edildi. İshalli
buzağılar kendi içerisinde mono enfekte ve ko enfeksiyon gruplarına göre iki
ana gruba, mono-enfekte buzağılar kendi içerisinde
E. coli,
Rotavirus, Coronavirus, Cryptosporidium
sp.,
ve Giardia sp., ko-enfekte
buzağılar ise Rotavirus + Cryptosporidium
sp.
ve E. coli + Cryptosporidium sp. olacak şekilde alt
gruplara ayrıldı. Buzağıların %6’sının E. coli, %19’u Cryptosporidium sp.,
%13’ü Rotavirus, %6’sı Coronovirus, %6’sı Giardia ile mono-enfekte, ko-enfekte
buzağıların ise %11’i E. coli + Cryptosporidium sp., ve %22’sinin
Rotavirüs + Cryptosporidium sp., ile
enfekte ve %17’nin sağlıklı olduğu belirlendi. Sağlıklı buzağılara göre mono
enfekte ve ko-enfekte buzağıların fibrinojen konsantrasyonlarının anlamlı
düzeyde yüksek olduğu buna karşın
25 (OH) D3 seviyelerinin ise her iki grupta sağlıklı
buzağılara göre anlamlı derecede düşük olduğu belirlendi. İshalli buzağılarda
fibrinojen ve 25 (OH) D3 konsantrasyonları arasında (r= - 403, p<0,05) negatif korelasyon bulunduğu belirlendi. Sonuç olarak
25
(OH) D3
konsantrasyonlarının ishalli buzağılarda enfeksiyonun varlığı ve şiddetine
bağlı olarak azaldığı tespit edildi.

Kaynakça

  • Ok M, Güler L, Turgut K, Ok U, Sen I, Gündüz IK, Birdane MF, Güzelbekteş H. The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses Public Health, 2009;56(2):94-101.
  • Taylor JA. Leukocyte Responsees in Ruminants. In, Bernart FF, Joseph GZ, Nemi CJ (Eds): Schalm’s Veterinary Hematology, Lippincott Wiliams and Wilkins, Philadelphia, 2000;5:391-401.
  • Dărăbuş G, Oprescu I, Morariu S, Mederle N, Imre K, Imre M, Brudiu I. The study of some haemathological parameters in infection with Cryptosporidium spp. and other enteropathogens in calves. Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului Timisoara, Medicina Veterinara, 2009;42(1):5-15.
  • Slanina L, Rossow N, Horvath Z, Fischer G. Innere Krankheiten der Haustiere. Bd ll: Funktionelle Störungen, Stoffwechselüberwachung in Kaelbernbestaende, 1988;536- 544.
  • Constable PD, Walker PG, Morın DE, Foreman JH. Clinical and laboratory assessment of hydration status of neonatal calves with diarrhea. Journal of the American Veterinary Medical Association, 1998;212:991-996.
  • Hafez AM. Untersuchungen zum Verhalten einiger Elektrolyte in Pansensaft, Blutserum und Harn sowie des roten und weissen Blutbildes bei gesunden und enteritiskranken Rindern im Hinblick auf therapeutische Schlussfolgerungen. Inaugural-Dissertation, Tieraerztliche Hochschule, Hannover, Deutschland, 1974.
  • Bouda J, Doubek J, Medina-Cruz M, Paasch ML, Candanosa AE, Dvořák R, Soška V. Pathophysiology of severe diarrhoea and suggested intravenous fluid therapy in calves of different ages under field conditions. Acta Veterinaria Brno, 1997;66(2):87-90.
  • Lorenz I. D-Lactic acidosis in calves. Veterinary Journal, 2009;179(2):197-203.
  • Şen İ, Güzelbekteş H, Yıldız R. Neonatal buzağı ishalleri: Patofizyoloji, epidemiyoloji, klinik, tedavi ve koruma. Turkiye Klinikleri Journal of Veterinary Science, 2013:4(1);71-78.
  • Smith GW, Berchtold J. Fluid therapy in calves. Veterinary Clinics of North America Food Animal Practice, 2014;30(2):409-427.
  • Constable P. Hyperkalemia in diarrheic calves: Implications for diagnosis and treatment. The Veterinary Journal, 2013;195:271-272.
  • Grove-White DH, Michell AR. Comparison of the measurement of total carbon dioxide and strong ion difference for the evaluation of metabolic acidosis in diarrhoeic calves. Veterinary Record, 2001;148:365–370.
  • Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infection and Immunity. 1994;62:5040-5047.
  • Wehkamp J, Schauber J, Stange EF. Defensins and cathelicidins in gastrointestinal infections. Current opinion in gastroenterology, 2007;23:32-38.
  • Gudmundsson GH, Bergman P, Andersson J, Raqib R, Agerberth B. Battle and balance at mucosal surfaces--the story of Shigella and antimicrobial peptides. Biochemical and Biophysical Research Communications, 2010;396:116-119
  • Kong J, Zhang Z, Musch MW, Sun J, Hart J, Bissonnette M, Li YC. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Physiological Society-Gastrointest and Liver Physiology. 2008;294:208-216.
  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Molecular Biology of the Cell, 2008;19:1912-1921.
  • Aaron S, Bancil- Andrew P. The Role of Vitamin D in Inflammatory Bowel Disease. Healthcare, 2015;3:338-350.
  • Horst RL, Goff JP, Reinhardt TA. Adapting to the transition between gestation and lactation: Differences between rat, human and dairy cow. Journal of Mammary Gland Biology and Neoplasia, 2005;10:141–156.
  • Pfeffer A, Rogers K, O’keeffe L, Osborn P. Acute phase protein response, food intake, liveweight change and lesions following intrathoracic injection of yeast in sheep. Research in Veterinary Science, 1993;55:360–366.
  • McSherry B, Horney F. Plasma fibrinogen levels in normal and sick cows. Can J Comp Med, 1970; 34:191-197
  • Eckersall P, Conner J. Bovine and canine acute phase proteins. Vet Res Commun, 1988;12:169–178.
  • Hypponen E, Laara E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet, 2001;358(9292):1500-1503.
  • Reid D, Toole BJ, Knox S, Dinesh T, Johann H, Denis St JO, Scott B, John K, McMillan CD, Wallace AM. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. The American Journal of Clinical Nutrition 2011;93:1006–1011.
  • Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. The American Journal of Clinical Nutrition, 2007; 85(6):1586-1591
  • Reis JP, Von Muhlen D, Miller ER, Michos ED, Appel LJ. Vitamin D status and cardiometabolic risk factors in the United States adolescent population. Pediatrics, 2009; 124(3):371-379.
  • Jorgensen SP, Agnholt J, Glerup H, et al. Clinical trial: vitamin D3 treatment in Crohn's disease - a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther, 2010; 32(3):377-383.
  • Haque UJ, Bathon JM, Giles JT. Association of vitamin D with cardiometabolic risk factors in rheumatoid arthritis. Arthritis Care Res (Hoboken), 2012;64(10):1497-1504.
  • Shamsir Ahmet AM. Association of Vitamin D status with acute respiratory infection and diarrhoea in children less than two years of age in an urban slum of Bangladesh. PhD Thesis, School of Public Health, The University of Queensland, 2016
  • Klein D, Kern A, Lapan G, Benetka V, Möstl K, Hassl A, Baumgartner W. Evaluation of Rapid Assays for the Detection of Bovine Coronavirus, Rotavirus A and Cryptosporidium parvum in Faecal Samples of Calves. Vet J, 2009;182:484-486

Evaluation of 25 (OH) D3 Concentrations in Neonatal Calves with Diarrhea

Yıl 2019, , 268 - 276, 30.09.2019
https://doi.org/10.30607/kvj.532206

Öz

In the present study
the aim was to determine the relationship between plasma vitamin D3 and
fibrinogen concentrations of calves with diarrhea. İn this context, calves
neonatal diarrhea (n = 100) and healthy (n = 20) ones were enrolled. Diarrheic
calves were enrolled into two intra-groups of mono and co-infected, then
mono-infected calves and co-infected calves were divided into subgroups
according to E. coli, Rotavirus, Coronavirus, Cryptosporidium sp.,
and Giardia sp., and Rotavirus + Cryptosporidium sp. and E. Coli +
Cryptosporidium sp. It was determined that 6% of the calves were infected with
and E.coli, 13% Rotavirus, 6% Coronavirus, 6% Giardia in mono-infected ones and
11% E.coli + Cryptosporidium sp., and 22% Rotavirus + Cryptosporidium sp., with
co-infection and 17% healthy. According to healthy calves, mono-infected and
co-infected calves had significantly higher fibrinogen concentrations, whereas
25 (OH) D3 levels were significantly lower in both groups than healthy calves.
There was a negative correlation between fibrinogen and 25 (OH) D3
concentrations (r = - 403, p <0.05) in calves with diarrhea. As a result, 25
(OH) D3 concentrations decreased in diarrhea calves due to the presence and
severity of the infection. 

Kaynakça

  • Ok M, Güler L, Turgut K, Ok U, Sen I, Gündüz IK, Birdane MF, Güzelbekteş H. The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses Public Health, 2009;56(2):94-101.
  • Taylor JA. Leukocyte Responsees in Ruminants. In, Bernart FF, Joseph GZ, Nemi CJ (Eds): Schalm’s Veterinary Hematology, Lippincott Wiliams and Wilkins, Philadelphia, 2000;5:391-401.
  • Dărăbuş G, Oprescu I, Morariu S, Mederle N, Imre K, Imre M, Brudiu I. The study of some haemathological parameters in infection with Cryptosporidium spp. and other enteropathogens in calves. Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului Timisoara, Medicina Veterinara, 2009;42(1):5-15.
  • Slanina L, Rossow N, Horvath Z, Fischer G. Innere Krankheiten der Haustiere. Bd ll: Funktionelle Störungen, Stoffwechselüberwachung in Kaelbernbestaende, 1988;536- 544.
  • Constable PD, Walker PG, Morın DE, Foreman JH. Clinical and laboratory assessment of hydration status of neonatal calves with diarrhea. Journal of the American Veterinary Medical Association, 1998;212:991-996.
  • Hafez AM. Untersuchungen zum Verhalten einiger Elektrolyte in Pansensaft, Blutserum und Harn sowie des roten und weissen Blutbildes bei gesunden und enteritiskranken Rindern im Hinblick auf therapeutische Schlussfolgerungen. Inaugural-Dissertation, Tieraerztliche Hochschule, Hannover, Deutschland, 1974.
  • Bouda J, Doubek J, Medina-Cruz M, Paasch ML, Candanosa AE, Dvořák R, Soška V. Pathophysiology of severe diarrhoea and suggested intravenous fluid therapy in calves of different ages under field conditions. Acta Veterinaria Brno, 1997;66(2):87-90.
  • Lorenz I. D-Lactic acidosis in calves. Veterinary Journal, 2009;179(2):197-203.
  • Şen İ, Güzelbekteş H, Yıldız R. Neonatal buzağı ishalleri: Patofizyoloji, epidemiyoloji, klinik, tedavi ve koruma. Turkiye Klinikleri Journal of Veterinary Science, 2013:4(1);71-78.
  • Smith GW, Berchtold J. Fluid therapy in calves. Veterinary Clinics of North America Food Animal Practice, 2014;30(2):409-427.
  • Constable P. Hyperkalemia in diarrheic calves: Implications for diagnosis and treatment. The Veterinary Journal, 2013;195:271-272.
  • Grove-White DH, Michell AR. Comparison of the measurement of total carbon dioxide and strong ion difference for the evaluation of metabolic acidosis in diarrhoeic calves. Veterinary Record, 2001;148:365–370.
  • Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infection and Immunity. 1994;62:5040-5047.
  • Wehkamp J, Schauber J, Stange EF. Defensins and cathelicidins in gastrointestinal infections. Current opinion in gastroenterology, 2007;23:32-38.
  • Gudmundsson GH, Bergman P, Andersson J, Raqib R, Agerberth B. Battle and balance at mucosal surfaces--the story of Shigella and antimicrobial peptides. Biochemical and Biophysical Research Communications, 2010;396:116-119
  • Kong J, Zhang Z, Musch MW, Sun J, Hart J, Bissonnette M, Li YC. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Physiological Society-Gastrointest and Liver Physiology. 2008;294:208-216.
  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Molecular Biology of the Cell, 2008;19:1912-1921.
  • Aaron S, Bancil- Andrew P. The Role of Vitamin D in Inflammatory Bowel Disease. Healthcare, 2015;3:338-350.
  • Horst RL, Goff JP, Reinhardt TA. Adapting to the transition between gestation and lactation: Differences between rat, human and dairy cow. Journal of Mammary Gland Biology and Neoplasia, 2005;10:141–156.
  • Pfeffer A, Rogers K, O’keeffe L, Osborn P. Acute phase protein response, food intake, liveweight change and lesions following intrathoracic injection of yeast in sheep. Research in Veterinary Science, 1993;55:360–366.
  • McSherry B, Horney F. Plasma fibrinogen levels in normal and sick cows. Can J Comp Med, 1970; 34:191-197
  • Eckersall P, Conner J. Bovine and canine acute phase proteins. Vet Res Commun, 1988;12:169–178.
  • Hypponen E, Laara E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet, 2001;358(9292):1500-1503.
  • Reid D, Toole BJ, Knox S, Dinesh T, Johann H, Denis St JO, Scott B, John K, McMillan CD, Wallace AM. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. The American Journal of Clinical Nutrition 2011;93:1006–1011.
  • Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. The American Journal of Clinical Nutrition, 2007; 85(6):1586-1591
  • Reis JP, Von Muhlen D, Miller ER, Michos ED, Appel LJ. Vitamin D status and cardiometabolic risk factors in the United States adolescent population. Pediatrics, 2009; 124(3):371-379.
  • Jorgensen SP, Agnholt J, Glerup H, et al. Clinical trial: vitamin D3 treatment in Crohn's disease - a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther, 2010; 32(3):377-383.
  • Haque UJ, Bathon JM, Giles JT. Association of vitamin D with cardiometabolic risk factors in rheumatoid arthritis. Arthritis Care Res (Hoboken), 2012;64(10):1497-1504.
  • Shamsir Ahmet AM. Association of Vitamin D status with acute respiratory infection and diarrhoea in children less than two years of age in an urban slum of Bangladesh. PhD Thesis, School of Public Health, The University of Queensland, 2016
  • Klein D, Kern A, Lapan G, Benetka V, Möstl K, Hassl A, Baumgartner W. Evaluation of Rapid Assays for the Detection of Bovine Coronavirus, Rotavirus A and Cryptosporidium parvum in Faecal Samples of Calves. Vet J, 2009;182:484-486
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Hasan Erdoğan 0000-0001-8109-8537

Tahir Özalp 0000-0002-9873-0364

Yayımlanma Tarihi 30 Eylül 2019
Kabul Tarihi 17 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Erdoğan, H., & Özalp, T. (2019). Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması. Kocatepe Veterinary Journal, 12(3), 268-276. https://doi.org/10.30607/kvj.532206
AMA Erdoğan H, Özalp T. Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması. kvj. Eylül 2019;12(3):268-276. doi:10.30607/kvj.532206
Chicago Erdoğan, Hasan, ve Tahir Özalp. “Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması”. Kocatepe Veterinary Journal 12, sy. 3 (Eylül 2019): 268-76. https://doi.org/10.30607/kvj.532206.
EndNote Erdoğan H, Özalp T (01 Eylül 2019) Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması. Kocatepe Veterinary Journal 12 3 268–276.
IEEE H. Erdoğan ve T. Özalp, “Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması”, kvj, c. 12, sy. 3, ss. 268–276, 2019, doi: 10.30607/kvj.532206.
ISNAD Erdoğan, Hasan - Özalp, Tahir. “Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması”. Kocatepe Veterinary Journal 12/3 (Eylül 2019), 268-276. https://doi.org/10.30607/kvj.532206.
JAMA Erdoğan H, Özalp T. Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması. kvj. 2019;12:268–276.
MLA Erdoğan, Hasan ve Tahir Özalp. “Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması”. Kocatepe Veterinary Journal, c. 12, sy. 3, 2019, ss. 268-76, doi:10.30607/kvj.532206.
Vancouver Erdoğan H, Özalp T. Neonatal İshalli Buzağılarda 25 (OH) D3 Konsantrasyonlarının Araştırılması. kvj. 2019;12(3):268-76.

13520    13521       13522   1352314104

14105         14106        14107       14108