Derleme
BibTex RIS Kaynak Göster

FAZ DEĞİŞTİREN MALZEMELERİN BİNA YAŞAM DÖNGÜSÜ EVRELERİNDEKİ MEVCUT POTANSİYELLERİ VE GELİŞMEYE AÇIK YÖNLERİ

Yıl 2023, Cilt: 1 Sayı: 1, 109 - 126, 20.11.2023

Öz

Gelişen teknoloji ile binalarda karkas sistemlere yönelinmesi, yığma sisteme göre daha ince kesitli bina cephelerinin inşa edilebilmesine olanak sağlamıştır. Ancak bu durum, masif malzemelerin termal kütle özelliklerinden ödün verilmesi neticesinde ısıl konforda ve akabinde enerji verimliliğinde düşüşe neden olabilmektedir. Faz değiştiren malzemeler (FDM), sabit sıcaklıklarda ve taş, tuğla gibi duyulur ısı depolama ile çalışan malzemelere oranla daha düşük hacimlerde çok daha fazla miktardaki ısıyı bünyesinde depolayabilen malzemelerdir. Yapı kabuğunda bu tür malzemelerden yararlanılması, kullanıcı konforunu artırarak aktif sistemlere olan bağımlılığın düşürülmesini sağlayabilir.
Bu çalışma, FDM’nin bir yapının yaşam döngüsünü oluşturan tedarik, üretim, nakliyat, kullanım, bakım-onarım ve atık evreleri boyunca ekonomik, ekolojik ve sosyal sürdürülebilirlik kavramları çerçevesinde literatürdeki çalışmalar üzerinden incelenmesini amaçlamaktadır. Bu tür malzemelerin her bir aşamada sunduğu avantajlar ve geliştirilmesi gereken yönler karşılaştırılmalı olarak incelenmiştir. Sonuç olarak FDM, enerji performansının yüksek olması, termal konfora katkı sunması ve atık malzeme kullanımına imkân sağlaması gibi özellikleri ile öne çıkmaktadır. Ancak yatırım maliyetlerinin yüksek olması, toksik özellik gösterebilmeleri ve üzerine çalışılması gereken standardizasyon problemleri ile geri planda kalmakta ve bu nedenle binalarda enerji verimliliğinin sağlanmasında halen yaygın olarak kullanım imkânı bulamamaktadırlar.

Kaynakça

  • Aditya, L., & Mahlia, T.M.I., & Rismanchi, B., & Ng, H.M., & Hasan, M.H., & Metselaar, H.S.C., & Muraza, O., & Aditiya, H.B. (2017). A review on insulation materials for energy conservation in buildings, Renewable and Sustainable Energy Reviews, 73, 1352-1365.
  • Alam, M., & Jamil, H., & Sanjayan, J., & Wilson, J. (2014). Energy saving potential of phase change materials in major Australian cities, Energy and Buildings, 78, 192-201.
  • Amoatey, P., & Al-Jabri, K., & Al-Saadi, S. (2022). Influence of phase change materials on thermal comfort, greenhouse gas emissions, and potential indoor air quality issues across different climatic regions: A critical review, Int J Energy Res., 46(15), 22386-22420.
  • Ascione, F., & Bianco, N., & Masi, R.F., & Mastellone, M., & Vanoli, G.P. (2019). Phase change materials for reducing cooling energy demand and improving indoor comfort: a step-by-step retrofit of a Mediterranean educational building, Energies, 12.
  • Aydın, A.A. (2010). Faz Değişim Malzemeleri ve Isı Enerjisinin Depolanması (Doktora Tezi), İstanbul Sanayi Odası, 29.
  • Bagazi, M.S., & Melaibari, A.A., & Khoshaim, A.B., & Abu-Hamdeh, N.H., & Alsaiari, A.O., & Abulkhair, H. (2021). Using phase change materials (PCMs) in a hot and humid climate to reduce heat gain and energy consumption, Sustainability, 13(19), 10965. https://doi.org/10.3390/su131910965
  • Baniassadi, A., & Sajadi, B., & Amidpour, M., & Noori, N. (2016). Economic optimization of PCM and insulation layer thickness in residential buildings, Sustainable Energy Technologies and Assessments, 14:92-99.
  • Barber, D. (2016). A House in The Sun: Modern Architecture and Solar Energy in The Cold War, Oxford University Press.
  • Barzin, R., & Chen, J.J.J., & Young, B.R., & Farid, M.M. (2015). Application of PCM energy storage in combination with night ventilation for space cooling, Applied Energy, 412-421.
  • Bjorn, A., & Owsianiak, M., & Molin, C., & Hauschild, M.Z. (2018). LCA History, Springer International Publishing.
  • Blankendaal, T., & Schuur, P., & Voordijk, H. (2014). Reducing the environmental impact of concrete and asphalt: A scenario approach, Journal of Cleaner Production, 66, 27–36.
  • Bohorquez-Ordenes, J., & Tapia-Calderon, A., & Vasco, D.A., & Estuardo-Flores, O., & Haddad, A.N. (2021). Methodology to reduce cooling energy consumption by incorporating PCM envelopes: A case study of a dwelling in Chile, Building and Environment, 206, 108373. https://doi.org/10.1016/j.buildenv.2021.108373
  • Bribian, I.Z., & Capilla, A.V., & Uson, A.A. (2010). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco efficiency improvement potential, Building and Environment, 46, 1133-1140.
  • Canım, D.S., & Kalfa, S.M. (2021). Faz değiştiren malzemelerin bina kabuğunda kullanımı, Dicle University Journal of Engineering, 12(2), 355-371.
  • Cardenas-Ramirez, C., & Jaramillo, F., & Botero, M.A.G., (2020). Systematic review of encapsulation and shape-stabilization of phase change materials, The Journal of Energy Storage, 30, 101495. https://doi.org/10.1016/j.est.2020.101495
  • Cellat, K., & Beyhan, B., & Konuklu, Y., & Dündar, C., & Karahan, O., & Güngör, C., & Paksoy, H. (2020). 2 years of monitoring results from passive solar energy storage in test cabins with phase change materials, Solar Energy, 200, 29-36.
  • CEPSA (2022). EPD dosyası, https://www.metsims.com/ adresinden 22.05.2023’te alınmıştır.
  • Chandel, S.S., & Agarwal, T. (2017). Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renewable and Sustainable Energy Reviews, 67, 581-596.
  • Chwieduk, D. (2014). Solar Energy in Buildings: thermal balance for efficient heating and cooling, Academic Press, Amsterdam.
  • Crawford, R.H., & Stephan, A., & Prideaux, F. (2019). Environmental Performance in Construction (EPiC) Database, The University of Melbourne, Melbourne.
  • Cunha, S., & Leite, P., & Aguiar, J., (2020). Characterization of innovative mortars with direct incorporation of phase change materials, Journal of Energy Storage, 30, 101439. https://doi.org/10.1016/j.est.2020.101439
  • Dixit, M.K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review, Journal of Cleaner Production, 209, 731-754.
  • Dixit, M.K., & Culp, C.H., & Lavy, S., & Fernadez-Solis, J. (2014). Recurrent embodied energy and its relationship with service life and life cycle energy: A review paper, Facilities, 32(3/4), 160-181.
  • Dixit, P., & Reddy, V.J., & Parvate, S., & Balwani, A., & Singh, J., & Maiti, T.K., & Dasari, A., & Chattopadhyay, S. (2022). Salt hydrate phase change materials: Current state of art and the road ahead, Journal of Energy Storage, 51, 104360. https://doi.org/10.1016/j.est.2022.104360
  • Duan, S., & Wang, L., & Zhao, Z., & Zhang, C. (2021). Experimental study on thermal performance of an integrated PCM Trombe wall, Renewable Energy, 163, 1932-1941.
  • Durakovic, B. (2020). PCM-based building envelope systems: Innovative design solutions for passive design, Springer.
  • EPA (2006). Life cycle assessment: principles and practice, Scientific Applications International Corporation (SAIC), U.S.
  • Evitasari, L., & Defiana, I., & Teddy, F.X., & Samodra, B. (2022). Application of PCM in Glass Facade of High-rise Apartment for Thermal Performance Improvement, Budapest International Research in Exact Sciences Journal, 4(3), 245-255.
  • Faraj, K., & Khaled, M., & Faraj, J., & Hachem, F., & Castelain, C. (2020). Phase change material thermal energy storage systems for cooling applications in buildings: A review, Renewable and Sustainable Energy Reviews, 119, 109579. https://doi.org/10.1016/j.rser.2019.109579
  • Gencel, O., & Yaras, A., & Hekimoğlu, G., & Ustaoglu A., & Erdogmus, E., & Sutcu M., & Sarı, A. (2022). Cement based-thermal energy storage mortar including blast furnace slag/capric acid shape-stabilized phase change material: Physical, mechanical, thermal properties and solar thermoregulation performance, Energy and Buildings, 258, 111849. https://doi.org/10.1016/j.enbuild.2022.111849
  • Girijappa, Y.G.T., & Rangappa, S.M., & Parameswaranpillai, J.P., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resources for development of eco-friendly composites: a comprehensive review, Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00226
  • Giro-Paloma, J., & Al-Shannaq, R., & Fernandez, A.I., & Farid, M.M. (2016). Preparation and characterization of microencapsulated phase change materials for use in building applications, Materials, 9(1). https://doi.org/10.3390/ma9010011
  • Grupo Industrial Crimidesa, (2022). EPD dosyası, https://www.metsims.com/ adresinden 22.05.2023’te alınmıştır.
  • Gupta, N., & Tiwari, G.N. (2016). Review of passive heating/cooling systems of buildings, Energy Science & Engineering, 4(5), 305-333.
  • Hasan, M.I., & Basher, H.O., & Shdhan, A.O. (2018). Experimental investigation of phase change materials for insulation of residential buildings, Sustainable Cities and Society, 36, 42-58.https://doi.org/10.1016/j.scs.2017.10.009
  • Izquierdo-Barrientos, M.A., & Belmonte, J.F., & Rodriguez-Sanchez, D., & Molina, A.E., & Almendros-Ibanez, J.A. (2012). A numerical study of external building walls containing phase change materials (PCM), Applied Thermal Engineering, 47, 73-85.
  • Kabdrakhmanova, M., & Memon, S.A., & Saurbayeva, A. (2021). Implementation of the panel data regression analysis in PCM integrated buildings located in a humid subtropical climate, Energy, 237, 121651. https://doi.org/10.1016/j.energy.2021.121651
  • Kharbouch, Y., & Mimet, A., & Ganaoui, M. (2017). Thermal impact study of a bio-based wall coupled with an inner PCM layer, Energy Procedia, 139, 10-15.
  • Kharbouch, Y., & Mimet, A., & Ganaoui, M., & Ouhsaine, L. (2018). Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco, International Journal of Sustainable Energy, 37(6), 515-532. https://doi.org/10.1080/14786451.2017.1365076
  • Kılıç Demircan, R., & Gültekin, A.B. (2017). Binalarda pasif ve aktif güneş sistemlerinin incelenmesi, TÜBAV Bilim, 10(1), 36-51.
  • Koç, İ., & Duru, M.O., & Dinçer, S.G. (2022). Yapılarda gömülü ve kullanım enerjisi kavramlarının yaşam döngüsü değerlendirmesi (YDD) metodolojisiyle irdelenmesi, bab Journal of FSMVU Faculty of Architecture and Design, 3(1), 55-69.
  • Kyriaki, E., & Konstantinidou, C., & Giama, E., & Papadopoulos, A.M. (2017). Life cycle analysis (LCA) and life cycle cost analysis (LCCA) of phase change materials (PCM) for thermal applications: A review, International Journal of Energy Research, 42(9), 3068-3077.
  • Lagou, A., & Kylili,A., & Sadauskiene, J., & Fokaides, P.A. (2019). Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions, Construction and Building Materials, 225, 452-464.
  • Leang, E., & Tittelein, P., Zalewski, L., Laussue, S. (2017). Numerical study of a composite trombe solar wall integrating microencapsulated PCM, CISBAT 2017 International Conference – Future Buildings & Districts Energy Efficiency from Nano to Urban Scale, Lausanne, İsviçre, Energy Procedia, 122, 1009-1014. https://doi.org/10.1016/j.egypro.2017.07.467
  • Lee, K.O., & Medina, M.A., & Sun, X. & Jin, X. (2018). Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls, Solar Energy, 163, 113–121.
  • Li, X., & Shen, C., & Yu, C.W.F., (2017). Building energy efficiency: Passive technology or active technology?, Indoor and Built Environment, 26(6), 729-732.
  • Li, Z.X., & Al-Rashed, A.A.A.A., & Rostamzadeh, M., & Kalnasi, R., & Shahsavar, A., & Afrand, M. (2019). Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM, Energy Conversion and Management, 195, 43-56.
  • Lin, Y., & Jia, Y., & Alva, G., & Fang, G. (2018). Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable and Sustainable Energy Reviews, 82, 2730-2742.
  • Lin, Y., & Zhong, S., & Yang, W., & Hao, X., & Li, C. (2021). Multi-objective design optimization on building integrated photovoltaic with Trombe wall and phase change material based on life cycle cost and thermal comfort, Sustainable Energy Technologies and Assessments, 46, 101277. https://doi.org/10.1016/j.seta.2021.101277
  • Liu, L., & Peng, B., & Yue, C., & Guo, M., & Zhang, M. (2019). Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a facile process for building energy efficiency, Materials Chemistry and Physics, 222, 87-95. https://doi. org/10.1016/j.matchemphys.2018.09.072
  • Llorach-Massana, P., & Pena, J., & Rieradevall, J., & Montero, J.I. (2016). LCA & LCCA of a PCM application to control root zone temperatures of hydroponic crops in comparison with conventional root zone heating systems, Renewable Energy, 85, 1079-1089.
  • Malmqvist, T., & Nehasilova, M., & Moncaster, A., & Birgisdottir, H., & Nygaard Rasmussen, F., & Houlihan Wiberg, A., & Potting, J. (2018). Design and construction strategies for reducing embodied impacts from buildings – Case study analysis. Energy and Buildings, 166, 35–47.
  • Markarian, E., & Fazelpour, F. (2019). Multi-objective optimization of energy performance of a building considering different configurations and types of PCM, Solar Energy, 191, 481-496.
  • Navarro, L., & Garcia, A., & Sole, C., & Castell, A., & Cabeza, L.F. (2012). Thermal loads inside buildings with phase change materials: Experimental results, Energy Procedia, 30, 342-349.
  • Navarro, L., & Gracia, A., & Castell, A., & Álvarez, S., & Cabeza, L.F. (2015). PCM incorporation in a concrete core slab as a thermal storage and supply system: Proof of concept, Energy and Buildings, 103, 70–82.
  • Nicholas, A.F., & Hussein, M.Z., & Zainal, Z., & Khadiran, T. (2018). Palm Kernel Shell Activated Carbon as an Inorganic Framework for Shape-Stabilized Phase Change Material, Nanomaterials, 8(9). https://doi.org/10.3390/nano8090689
  • Nie, B., & She, X., & Du, Z., & Xie C., & Li, Y., & He, Z., & Ding, Y. (2019). System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications, Applied Energy, 251, 113254. https://doi.org/10.1016/j.apenergy.2019.05.057
  • Ning, M., & Jingyu, H., & Dongmei, P., & Shengchun, L., & Mengjie, S. (2017). Investigations on thermal environment in residential buildings with PCM embedded in external wall, 9th International Conference on Applied Energy, ICAE2017, 21-24 August 2017, Cardiff, UK, Energy Procedia, 142, 1888-1895.
  • Okogeri, O., & Stathopoulos, V.N. (2021). What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications, Int. Journal of Termofluids, 10.
  • Pfleger, N., & Bauer, T., & Martin, C., & Eck, M., & Wörner, A. (2015). Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage, Beilstein Journal of Nanotechnology, 6, 1487-1497.
  • Qu, Y., & Zhou, D., & Xue, F., & Cui, L. (2021). Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer, Energy & Buildings, 241, 110966. https://doi.org/10.1016/j.enbuild.2021.110966
  • Rasta, I.M., & Wardana, I.N.G., & Hamidi, N., & Sasongko, M.N. (2016). The Role of Soya Oil Ester in Water-Based PCM for Low Temperature Cool Energy Storage, Journal of Termodynamics, 2016, 5384640. https://doi.org/10.1155/2016/5384640
  • Rathore, P.K.S., & Shukla, S.K. (2020). An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings, Renewable Energy, 149, 1300–1313.
  • Rincón, L., & Castell, A., & Pérez, G., & Solé, C., & Boer, D., & Cabeza, L.F. (2013). Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment, Applied Energy, 109, 544-552.
  • Saadatian, O., & Sopian, K., & Lim, C.H., & Asim, N., & Sulaiman, M.Y. (2012). Trombe walls: A review of opportunities and challenges in research and development, Renewable and Sustainable Energy Reviews, 16, 6340-6351.
  • Sahu L.K., & Mondloe, D., & Garhewal, A. (2017). A review on thermal and mechanical properties of concrete containing phase change material, Int. Research Journal of Engineering and Technology (IRJET), 4(5), 1-12.
  • Silva, T., & Vicente, R., & Amaral, C., & Figueiredo, A. (2016). Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis, Applied Energy, 179, 64-84.
  • Struhala, K., & Ostry, M. (2022). Life-Cycle Assessment of phase-change materials in buildings: A review, Journal of Cleaner Production, 336, 130359. https://doi.org/10.1016/j.jclepro.2022.130359
  • Talu, F., & Mert, M.S., & Mert, H.H. (2023). Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 531-547.
  • Thapa, S., & Panda, G.K. (2015). Energy conservation in buildings – a review, International Journal of Energy Engineering, 5(4), 95-112.
  • URL-1. https://group.met.com/ adresinden 01.05.2023’te alınmıştır.
  • URL-2. https://phasechange.com/biopcm/ adresinden 19.05.2023’te alınmıştır.
  • URL-3. https://infiniterpcm.com/the-product adresinden 19.05.2023’te alınmıştır.
  • URL-4. https://www.rubitherm.eu/en/productcategory/ adresinden 19.05.2023’te alınmıştır.
  • URL-5.http://www.edsl.myzen.co.uk/downloads/misc/DuPont%20ENERGAIN%28r%29%20PCM%20Guidebook_December%202010.pdf adresinden 08.06.2023’te alınmıştır.
  • URL-6. https://www.architectureanddesign.com.au/projects/2016/green-building-project/knauf-comfortboard-by-knauf adresinden 08.06.2023’te alınmıştır.
  • URL-7. https://www.coralinnovative.com/pcm-detay adresinden 20.10.2023’te alınmıştır
  • Vega, M., & Llantoy, N., & Chafer, M., & Ushak, S., & Cabeza, L. (2022). Life cycle assessment of the inclusion of phase change materials in lightweight buildings, Journal of Energy Storage, 56, 105903. https://doi.org/10.1016/j.est.2022.105903
  • Vukotic, L., & Fenner, R., & Symons, K. (2010). Assessing embodied energy of building structural elements, Engineering Sustainability, 163(3), 147-158.
  • Wang, S., & Matiasovsky, P., & Mihalka, P., & Lai, C. (2018). Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard, Energy and Buildings, 159, 419-425.
  • Wi, S., & Chang, S.J., & Kim, S. (2020). Improvement of thermal inertia effect in buildings using shape stabilized PCM wallboard based on the enthalpy-temperature function, Sustainable Cities and Society, 56, 102067. https://doi.org/10.1016/j.scs.2020.102067
  • Winans, K., & Kendall, A., & Deng, H. (2017). The history and current applications of the circular economy, concept, Renewable and Sustainable Energy Reviews, 68, 825-833.
  • Wu, D., & Rahim, M., & El Ganaoui, M., & Bennacer, R., & Djedjig, R., & Liu, B. (2022). Dynamic hygrothermal behavior and energy performance analysis of a novel multilayer building envelope based on PCM and hemp concrete, Materials, 341, 127739. https://doi.org/10.1016/j.conbuildmat.2022.127739
  • Xiong, Q., & Alshehri, H.M., & Monfaredi, R., & Tayebi, T., & Majdoub, F., & Hajjar, A., & Delpisheh, M., Izadi, M. (2022). Application of phase change material in improving trombe wall efficiency: An up-to-date and comprehensive overview, Energy & Buildings, 258, 111824. https://doi.org/10.1016/j.enbuild.2021.111824
  • Yan, H., & Shen, Q., & Fan, L.C.H., & Wang, Y., & Zhang, L., (2010). Greenhouse gas emissions in building construction: A case study of one Peking in Hong Kong, Building and Environment, 45, 949–955.
  • Yao, C., & Kong, X., & Li, Y., & Du, Y., & Qi, C. (2018). Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building, Energy Conversion and Management, 155, 20-31.
  • Yousef, M.S., & Hassan, H. (2020). Energy payback time, exergoeconomic and enviroeconomic analyses of using thermal energy storage system with a solar desalination system: An experimental study, Journal of Cleaner Production, 270, 122082. https://doi.org/10.1016/j.jclepro.2020.122082
  • Yousef, M.S., & Sharaf, M., & Huzayyin, A.S. (2022). Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraffin-metal foam composite: An experimental study, Energy, 238, 121807. https://doi.org/10.1016/j.energy.2021.121807
  • Yousefi, A., & Tang, W., & Khavarian, M., & Fang, C. (2021). Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite, Renewable Energy, 175, 14-28. https://doi.org/10.1016/j.renene.2021.04.123
  • Zhang, Y., & Lin, K.P., & Yang, R., & Di, H.F., & Jiang, Y. (2006). Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings, Energy and Buildings, 38(10), 1262-1269.
Toplam 90 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlıkta Malzeme ve Teknoloji
Bölüm Derlemeler
Yazarlar

Ebru Kılıç Bakırhan Bu kişi benim 0000-0003-0650-8297

Erken Görünüm Tarihi 20 Kasım 2023
Yayımlanma Tarihi 20 Kasım 2023
Gönderilme Tarihi 30 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

APA Kılıç Bakırhan, E. (2023). FAZ DEĞİŞTİREN MALZEMELERİN BİNA YAŞAM DÖNGÜSÜ EVRELERİNDEKİ MEVCUT POTANSİYELLERİ VE GELİŞMEYE AÇIK YÖNLERİ. Mekansal Araştırmalar Dergisi, 1(1), 109-126.

  Mekansal Araştırmalar Dergisi tarafından yayıma kabul edilen çalışmalar Creative Commons Atıf-GayriTicari 4.0 Uluslararası (CC BY-NC-ND 4.0) lisansı ile yayımlanır.