Araştırma Makalesi
BibTex RIS Kaynak Göster

ORTAOKUL MATEMATİK ÖĞRETMENİ ADAYLARININ ORİGAMİ DERSİNDE EDİNDİKLERİ DENEYİMLER

Yıl 2019, , 136 - 166, 26.04.2019
https://doi.org/10.21764/maeuefd.482716

Öz

Bu çalışmada ortaokul matematik öğretmeni
adaylarının seçmeli origami dersi kapsamında origamiyle ilgili edindikleri
deneyimlerin açığa çıkarılması amaçlanmıştır.  Bu derste katılımcılar etkinlik tasarlayarak,
bu etkinlikleri uygulayarak ve farklı etkinliklere katılarak origamiyle ilgili
deneyim edinmişlerdir. Araştırmanın katılımcıları 2017–2018 akademik yılının
bahar döneminde bir devlet üniversitesinde ilköğretim matematik öğretmenliği
lisans programına kayıtlı olan 19 son sınıf öğretmen adayıdır. Araştırmanın
verileri, katılımcı gözlemler ve yapılandırılmış mülakatlar yoluyla elde
edilmiştir. Veriler içerik analiz yöntemlerinden tümevarımsal analiz yöntemi
kullanılarak analiz edilmiştir. Yazarlar sürekli karşılaştırmalı analiz
tekniğini kullanarak verileri açık kodlama işlemine tabi tutmuşlardır. Benzer
kodlar bir araya getirilerek kategoriler ve temalar oluşturulmuştur. Son
olarak, araştırmacılar bağımsız olarak yaptıkları kodlamaları kontrol etmiş ve birkaç
oturum sonrasında analizler üzerinde fikir birliğine varmışlardır. Verilerin
analizine göre öğretmen adaylarının origami dersinde edindikleri deneyimler şu
dört kategori altında toplanmıştır: origaminin öğrencilerin bireysel
gelişimlerini (bilişsel, duyuşsal ve psikomotor gelişim) desteklemedeki rolüyle
ilgili deneyimler, origaminin matematik öğretimindeki rolüyle ilgili
deneyimler, origaminin matematik öğretimindeki sınırlılıklarıyla ilgili
deneyimler ve matematik öğretiminde origami kullanılırken dikkat edilmesi
gereken hususlarla ilgili deneyimler. Çalışmanın bulgularından yola çıkılarak
ileride yapılabilecek araştırmalarla ilgili önerilerde bulunulmuştur.

Kaynakça

  • Arıcı, S., & Aslan-Tutak, F. (2015). The effect of origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179-200.
  • Arslan, O. (2012). Investigating beliefs and perceived self-efficacy beliefs of prospective elementary mathematics teachers towards using origami in mathematics education (Unpublished master’s thesis). Middle East Technical University, Ankara.
  • Arslan, O., & Işıksal-Bostan, M. (2016). Turkish prospective middle school mathematics teachers’ beliefs and perceived self-efficacy beliefs regarding the use of origami in mathematics education. Eurasia Journal of Mathematics, Science & Technology Education, 12(6), 1533-1548.
  • Bayhan, P. ve Artan, İ. (2005). Çocuk gelişimi ve eğitimi. İstanbul: Morpa Kültür Yayıncılık.
  • Beech, R. (2009). The practical illustrated encyclopedia of origami: The complete guide to the art of paper folding. London: Lorenz Books.
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathidues, 1(1), 1-9.
  • Boakes, N. J. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. RMLE Online, 32(7), 1-12.
  • Budinski, N., Lavicza, Z., & Fenyvesi, K. (2018). Ideas for using GeoGebra and Origami in teaching regular polyhedrons lessons. K-12 STEM Education, 4(1), 297-303.
  • Cagle, M. (2009). Modular origami in the secondary geometry classroom. In R. J. Lang (Ed.), Origami 4: Fourth international meeting of origami science, math, and education (pp. 497-506). Natick, MA: A. K. Peters.
  • Canadas, M., Molina, M., Gallardo, S., Martinez-Santaolalla, M., & Penas, M. (2010). Let’s teach geometry, Mathematics Teaching, 218, 32-37.
  • Christensen, L. B., Johnson, R. B., & Turner, L. A. (2014). Research methods, design, and analysis (12th ed.). Boston: Pearson Education Limited.
  • Cipoletti, B., & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31.
  • Coad, L. (2006). Paper folding in the middle school classroom and beyond. Australian Mathematics Teacher, 62(1), 6-13.
  • Corbin, J., & Straus, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.). USA: SAGE Publications, Inc.
  • Cornelius, V., & Tubis, A. (2002). Using triangular boxes from rectangular paper to enrich trigonometry and calculus. In T. Hull (Ed.), Origami 3: Third international meeting of origami science, mathematics, and education (pp. 299-305). Massachusetts: A. K. Peters, Ltd.
  • Costello, J. (1985). Origami polyhedra. Mathematics in School, 14(5), 2-4.
  • Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). USA: SAGE Publications, Inc.
  • Çakmak, S., Işıksal, M., & Koç, Y. (2014). Investigating effect of origami-based instruction on elementary students’ spatial skills and perceptions. The Journal of Educational Research, 107(1), 59-68.
  • Çaylan, B., Masal, M., Masal, E., Takunyacı, M. ve Ergene, Ö. (2017). İlköğretim matematik öğretmen adaylarının Van Hiele geometrik düşünme düzeyleri ile origami inançlarının origami ile matematik dersi süresince incelenmesi. Journal of Multidisciplinary Studies in Education, 1(1), 24-35.
  • Çetin, Z., & Danacı, M. Ö. (2015). Collage and paper art activities and preschool children’s reading and writing readiness. Hacettepe University Faculty of Health Sciences Journal, 2(1), 39-50.
  • Duatepe-Paksu, A. (2017). Constructing a rhombus through paper folding. International Journal of Mathematical Education in Science and Technology, 48(5), 763-767.
  • Durualp, E. ve Aral, N. (2018). Çocukların ince ve kaba motor gelişimlerine oyun etkinliklerinin etkisinin incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(1), 243-258.Empson, S. B., & Turner, E. (2006). The emergence of multiplicative thinking in children’s solutions to paper folding tasks. The Journal of Mathematical Behavior, 25(1), 46-56.
  • Erlandson, D. A., Harris, E. L., Skipper, B. L., & Allen, S. D. (1993). Doing naturalistic inquiry: A guide to methods. California: SAGE Publications, Inc.
  • Fehlen, J. E. (1975). Paper folds and proofs. Mathematics Teacher, 68(7), 608-611.
  • Fisher, N. C. (1973). Practical paper models for number concepts. The Arithmetic Teacher, 20(8), 630-633.
  • Fox, J. E., & Berry S. (2001). Art in early childhood: Curriculum connections. Retrieved from http://iel.org/sites/default/files/ArtinEarlyChildhoodCurriculumConnections.pdf
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in the Middle School, 16(6), 354-361.
  • Golan, M., & Jackson, P. (2010). Origametria: A program to teach geometry and to develop learning skills using the art of origami. In R. J. Lang (Ed.), Origami 4: Fourth international meeting of origami science, mathematics, and education (pp. 459-469). Florida: CRC Press.
  • Haibach, P. S., Reid, G., & Collier, D. H. (2017). Motor learning and development (2nd ed.)., Illinois: Human Kinetics.
  • Hartzler, S. J. (2003). Ratios of linear, area, and volume measures in similar solids. Mathematics Teaching in the Middle School, 8(5), 228-232.
  • Haywood, K. M., Roberton, M. A., & Getchell, N. (2011). Advanced analysis of motor development. Illinois: Human Kinetics.
  • Higginson, W., & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349.
  • Hsiao, J. (2015). Finding fifths in origami. Mathematics Teacher, 109(1), 71-75.
  • Hull, T. (2016). Origami. In H. Selin (Ed.), Encyclopedia of the history of science, technology, and medicine in non-western cultures (3rd ed., pp. 1797-1800). Dordrecht: Springer.
  • Kandil, S., & Işıksal-Bostan, M. (2018). Effect of inquiry-based instruction enriched with origami activities on achievement, and self-efficacy in geometry. International Journal of Mathematical Education in Science and Technology. doi: 10.1080/0020739X.2018.1 527407
  • Kavici, M. (2005). Gelişimsel origami eğitim programının okulöncesi dönem çocuklarının çok boyutlu gelişimlerine etkisinin incelenmesi (Yayınlanmamış yüksek lisans tezi). Hacettepe Üniversitesi, Ankara.
  • Kawamura, M. (2002). Origami with trigonometric functions. In T. Hull (Ed.), Origami 3: Third international meeting of origami science, mathematics, and education (pp. 169-176). Massachusetts: A. K. Peters, Ltd.
  • Kieren, T. (1995). Creating spaces for learning fractions. In J. Sowder & B. Schappelle (Eds.), Providing a foundation for teaching mathematics in the middle grades (pp. 31-65). Albany, NY: SUNY.
  • Lang, R. J. (2002). Polypolyhedra in origami. In T. Hull (Ed.), Origami 3: Third international meeting of origami science, mathematics, and education (pp. 153-167). Massachusetts: A. K. Peters, Ltd.
  • Levenson, G. (2002). The educational benefits of origami. Retrieved from http://home.earthlink.net/~robertcubie/origami/edu.html
  • Masal, M., Ergene, Ö., Takunyacı, M., & Masal, E. (2018). Prospective teachers’ views about using origami in mathematics lessons. International Journal of Educational Studies in Mathematics, 5(2), 56-65.
  • Milli Eğitim Bakanlığı. (2018). Ortaokul matematik dersi (5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4th ed.). San Francisco, CA: John Wiley & Sons, Inc.
  • Miles, V. L. (2011). Modular origami: Moving beyond cubes. Mathematics Teaching in the Middle School,17(3), 180-187.
  • Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: SAGE.
  • Otluoğlu, R. (2002). İlköğretim okulu izlencesinde (programında) duyuşsal alan ve duygu eğitimi. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 15, 163-172.
  • Özçelik, D. A. (2010). Eğitim programları ve öğretim (genel öğretim yöntemi). Ankara: Pegem Akademi Yayıncılık.
  • Pagni, D., & Espinoza, L. (2001). Angle limit–A paper-folding investigation. Mathematics Teacher, 94(1), 20-22.
  • Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). USA: SAGE Publications.
  • Perks, P., & Prestage, S. (2006). The ubiquitous isosceles triangle part 3: From paper folding to... Mathematics in School, 35(3), 9-11.
  • Polat, S. (2013). Origami ile matematik öğretimi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(21), 15-27.
  • Pope, S., & Lam, T. K. (2009). Using origami to promote problem solving, creativity, and communication in mathematics education. In R. J. Lang (Eds.), Origami 4: Fourth international meeting of origami science, math, and education (pp. 517-525). Natick, MA: A. K. Peters.
  • Pothier, Y., & Sawada, D. (1990). Partitioning: An approach to fractions. The Arithmetic Teacher, 38(4), 12-16.
  • Reyner, A. (2001). Seven good things for you to know about how the arts help children grow. Retrieved from http://www.earlychildhoodnews.com/earlychildhood/article_view.aspx?ArticleID=257
  • Russell, R. A. (2011). Is there a “best” rectangle? Mathematics Teacher, 105(4), 254-260.
  • Russell, R. A. (2017). Fractions in origami pinwheels. Teaching Children Mathematics, 23(9), 532-540.
  • Senemoğlu, N. (2018). Gelişim öğrenme ve öğretim: Kuramdan uygulamaya. Ankara: Anı Yayıncılık.
  • Sezginsoy Şeker, B. (2016). Sınıf öğretmeni adayları tarafından oluşturulan origami etkinliklerinin değerlendirilmesi. Turkish Studies, 11(3), 1991-2008.
  • Shirouzu, H. (2013). Learning fractions through folding in an elementary face-to-face classroom. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs, & N. Law (Eds.), Productive multivocality in the analysis of group interactions (pp. 63-101). Springer, Boston, MA.
  • Shumakov, K., & Shumakov, Y. (2000). Left brain and right brain at origami training. Retrieved from https://www.oriland.com/oriversity/lecture.php?category=benefits&ID=02#Intro
  • Skillen, M. (2015). A paper folding activity. Australian Mathematics Teacher, 71(2), 40.
  • Sze, S. (2005). An analysis of constructivism and the ancient art of origami. Retrieved from https://files.eric.ed.gov/fulltext/ED490350.pdf
  • Tuğrul, B. ve Kavici, M. (2002). Kâğıt katlama sanatı ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(11), 1-17.
  • Turner, E. E., Junk, D. L., & Empson, S. B. (2007). The power of paper-folding tasks: Supporting multiplicative thinking and rich mathematical discussion. Teaching Children Mathematics, 13(6), 322-329.
  • Ünan, Z., Aksan, Z. ve Çelikler, D. (2017). İlköğretim matematik öğretmen adaylarının origami konusundaki farkındalıkları. The Fourth International Eurasian Educational Research Congress, (s. 62-66). Denizli: Pamukkale Üniversitesi.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264-272.
  • Wares, A. (2013). An application of the theory of multiple intelligences in mathematics classrooms in the context of origami. International Journal of Mathematical Education in Science and Technology, 44(1), 122-131.
  • Wares, A. (2014). Problem solving through paper folding. Australian Senior Mathematics Journal, 28(2), 60-63.
  • Wares, A. (2018). Pythagoras meets paper folding. Mathematics Teacher, 111(5), 400.
  • Wares, A., & Elstak, I. (2017). Origami, geometry and art. International Journal of Mathematical Education in Science and Technology, 48(2), 317-324.
  • Yavuz, N. F. ve Özyürek, A. (2018). Beden eğitimi ve spor etkinliklerinin okul öncesi dönem çocuklarının hareket becerileri üzerine etkisi. Karaelmas Eğitim Bilimleri Dergisi, 6, 40-50.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (6. bs.). Ankara: Seçkin Yayıncılık.
  • Yıldız, R. ve Bayram, S. (2006). Devinsel işlemlerin öğretimi. A. Şimşek (Ed.), İçerik türlerine dayalı öğretim içinde (s. 1-18). Ankara: Nobel Akademik Yayıncılık.
  • Yuzawa, M., & Bart, W. M. (2002). Young children’s learning of size comparison strategies: Effect of origami exercises. The Journal of Genetic Psychology, 163(4), 459-478.
  • Zhang, Y. Q. (2006). Proving the area formulas by paper-folding. Mathematics in School, 35(2), 12-14.

THE LIVED EXPERIENCES OF PROSPECTIVE MIDDLE SCHOOL MATHEMATICS TEACHERS IN AN ORIGAMI COURSE

Yıl 2019, , 136 - 166, 26.04.2019
https://doi.org/10.21764/maeuefd.482716

Öz

The purpose of this study was to explore the
lived experiences of prospective middle school mathematics teachers in an
elective origami course. In this course, the participants gained some
experience with origami by designing and implementing activities and taking
part in other participants’ activities. The participants were 19 senior
prospective middle school mathematics teachers enrolled in a teacher education
program at a public university in the spring semester of
2017–2018 academic
year. The data of this study were collected by participant observations and
semi-structured interviews. Inductive qualitative analysis, one form of content
analysis, was used to analyze the data of the study. The two authors open coded
the data by using the constant comparison technique. Categories and themes
emerged from common codes. Finally, the two authors checked their independent
codings and reached a consensus on them after a number of sessions. The
analysis of data showed that the
prospective teachers had
the following four categories of experiences in the elective origami course:
experiences about the role of origami in
students’ personal (cognitive, affective and psychomotor) development,
experiences about the role of origami in the teaching of mathematics,
experiences about the limitations of origami in mathematics teaching and experiences
about the issues that must be considered when
using origami in mathematics lessons.
Suggestions for future research were made based
on the findings of the study.

Kaynakça

  • Arıcı, S., & Aslan-Tutak, F. (2015). The effect of origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179-200.
  • Arslan, O. (2012). Investigating beliefs and perceived self-efficacy beliefs of prospective elementary mathematics teachers towards using origami in mathematics education (Unpublished master’s thesis). Middle East Technical University, Ankara.
  • Arslan, O., & Işıksal-Bostan, M. (2016). Turkish prospective middle school mathematics teachers’ beliefs and perceived self-efficacy beliefs regarding the use of origami in mathematics education. Eurasia Journal of Mathematics, Science & Technology Education, 12(6), 1533-1548.
  • Bayhan, P. ve Artan, İ. (2005). Çocuk gelişimi ve eğitimi. İstanbul: Morpa Kültür Yayıncılık.
  • Beech, R. (2009). The practical illustrated encyclopedia of origami: The complete guide to the art of paper folding. London: Lorenz Books.
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathidues, 1(1), 1-9.
  • Boakes, N. J. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. RMLE Online, 32(7), 1-12.
  • Budinski, N., Lavicza, Z., & Fenyvesi, K. (2018). Ideas for using GeoGebra and Origami in teaching regular polyhedrons lessons. K-12 STEM Education, 4(1), 297-303.
  • Cagle, M. (2009). Modular origami in the secondary geometry classroom. In R. J. Lang (Ed.), Origami 4: Fourth international meeting of origami science, math, and education (pp. 497-506). Natick, MA: A. K. Peters.
  • Canadas, M., Molina, M., Gallardo, S., Martinez-Santaolalla, M., & Penas, M. (2010). Let’s teach geometry, Mathematics Teaching, 218, 32-37.
  • Christensen, L. B., Johnson, R. B., & Turner, L. A. (2014). Research methods, design, and analysis (12th ed.). Boston: Pearson Education Limited.
  • Cipoletti, B., & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31.
  • Coad, L. (2006). Paper folding in the middle school classroom and beyond. Australian Mathematics Teacher, 62(1), 6-13.
  • Corbin, J., & Straus, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.). USA: SAGE Publications, Inc.
  • Cornelius, V., & Tubis, A. (2002). Using triangular boxes from rectangular paper to enrich trigonometry and calculus. In T. Hull (Ed.), Origami 3: Third international meeting of origami science, mathematics, and education (pp. 299-305). Massachusetts: A. K. Peters, Ltd.
  • Costello, J. (1985). Origami polyhedra. Mathematics in School, 14(5), 2-4.
  • Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). USA: SAGE Publications, Inc.
  • Çakmak, S., Işıksal, M., & Koç, Y. (2014). Investigating effect of origami-based instruction on elementary students’ spatial skills and perceptions. The Journal of Educational Research, 107(1), 59-68.
  • Çaylan, B., Masal, M., Masal, E., Takunyacı, M. ve Ergene, Ö. (2017). İlköğretim matematik öğretmen adaylarının Van Hiele geometrik düşünme düzeyleri ile origami inançlarının origami ile matematik dersi süresince incelenmesi. Journal of Multidisciplinary Studies in Education, 1(1), 24-35.
  • Çetin, Z., & Danacı, M. Ö. (2015). Collage and paper art activities and preschool children’s reading and writing readiness. Hacettepe University Faculty of Health Sciences Journal, 2(1), 39-50.
  • Duatepe-Paksu, A. (2017). Constructing a rhombus through paper folding. International Journal of Mathematical Education in Science and Technology, 48(5), 763-767.
  • Durualp, E. ve Aral, N. (2018). Çocukların ince ve kaba motor gelişimlerine oyun etkinliklerinin etkisinin incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(1), 243-258.Empson, S. B., & Turner, E. (2006). The emergence of multiplicative thinking in children’s solutions to paper folding tasks. The Journal of Mathematical Behavior, 25(1), 46-56.
  • Erlandson, D. A., Harris, E. L., Skipper, B. L., & Allen, S. D. (1993). Doing naturalistic inquiry: A guide to methods. California: SAGE Publications, Inc.
  • Fehlen, J. E. (1975). Paper folds and proofs. Mathematics Teacher, 68(7), 608-611.
  • Fisher, N. C. (1973). Practical paper models for number concepts. The Arithmetic Teacher, 20(8), 630-633.
  • Fox, J. E., & Berry S. (2001). Art in early childhood: Curriculum connections. Retrieved from http://iel.org/sites/default/files/ArtinEarlyChildhoodCurriculumConnections.pdf
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in the Middle School, 16(6), 354-361.
  • Golan, M., & Jackson, P. (2010). Origametria: A program to teach geometry and to develop learning skills using the art of origami. In R. J. Lang (Ed.), Origami 4: Fourth international meeting of origami science, mathematics, and education (pp. 459-469). Florida: CRC Press.
  • Haibach, P. S., Reid, G., & Collier, D. H. (2017). Motor learning and development (2nd ed.)., Illinois: Human Kinetics.
  • Hartzler, S. J. (2003). Ratios of linear, area, and volume measures in similar solids. Mathematics Teaching in the Middle School, 8(5), 228-232.
  • Haywood, K. M., Roberton, M. A., & Getchell, N. (2011). Advanced analysis of motor development. Illinois: Human Kinetics.
  • Higginson, W., & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349.
  • Hsiao, J. (2015). Finding fifths in origami. Mathematics Teacher, 109(1), 71-75.
  • Hull, T. (2016). Origami. In H. Selin (Ed.), Encyclopedia of the history of science, technology, and medicine in non-western cultures (3rd ed., pp. 1797-1800). Dordrecht: Springer.
  • Kandil, S., & Işıksal-Bostan, M. (2018). Effect of inquiry-based instruction enriched with origami activities on achievement, and self-efficacy in geometry. International Journal of Mathematical Education in Science and Technology. doi: 10.1080/0020739X.2018.1 527407
  • Kavici, M. (2005). Gelişimsel origami eğitim programının okulöncesi dönem çocuklarının çok boyutlu gelişimlerine etkisinin incelenmesi (Yayınlanmamış yüksek lisans tezi). Hacettepe Üniversitesi, Ankara.
  • Kawamura, M. (2002). Origami with trigonometric functions. In T. Hull (Ed.), Origami 3: Third international meeting of origami science, mathematics, and education (pp. 169-176). Massachusetts: A. K. Peters, Ltd.
  • Kieren, T. (1995). Creating spaces for learning fractions. In J. Sowder & B. Schappelle (Eds.), Providing a foundation for teaching mathematics in the middle grades (pp. 31-65). Albany, NY: SUNY.
  • Lang, R. J. (2002). Polypolyhedra in origami. In T. Hull (Ed.), Origami 3: Third international meeting of origami science, mathematics, and education (pp. 153-167). Massachusetts: A. K. Peters, Ltd.
  • Levenson, G. (2002). The educational benefits of origami. Retrieved from http://home.earthlink.net/~robertcubie/origami/edu.html
  • Masal, M., Ergene, Ö., Takunyacı, M., & Masal, E. (2018). Prospective teachers’ views about using origami in mathematics lessons. International Journal of Educational Studies in Mathematics, 5(2), 56-65.
  • Milli Eğitim Bakanlığı. (2018). Ortaokul matematik dersi (5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4th ed.). San Francisco, CA: John Wiley & Sons, Inc.
  • Miles, V. L. (2011). Modular origami: Moving beyond cubes. Mathematics Teaching in the Middle School,17(3), 180-187.
  • Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: SAGE.
  • Otluoğlu, R. (2002). İlköğretim okulu izlencesinde (programında) duyuşsal alan ve duygu eğitimi. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 15, 163-172.
  • Özçelik, D. A. (2010). Eğitim programları ve öğretim (genel öğretim yöntemi). Ankara: Pegem Akademi Yayıncılık.
  • Pagni, D., & Espinoza, L. (2001). Angle limit–A paper-folding investigation. Mathematics Teacher, 94(1), 20-22.
  • Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). USA: SAGE Publications.
  • Perks, P., & Prestage, S. (2006). The ubiquitous isosceles triangle part 3: From paper folding to... Mathematics in School, 35(3), 9-11.
  • Polat, S. (2013). Origami ile matematik öğretimi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(21), 15-27.
  • Pope, S., & Lam, T. K. (2009). Using origami to promote problem solving, creativity, and communication in mathematics education. In R. J. Lang (Eds.), Origami 4: Fourth international meeting of origami science, math, and education (pp. 517-525). Natick, MA: A. K. Peters.
  • Pothier, Y., & Sawada, D. (1990). Partitioning: An approach to fractions. The Arithmetic Teacher, 38(4), 12-16.
  • Reyner, A. (2001). Seven good things for you to know about how the arts help children grow. Retrieved from http://www.earlychildhoodnews.com/earlychildhood/article_view.aspx?ArticleID=257
  • Russell, R. A. (2011). Is there a “best” rectangle? Mathematics Teacher, 105(4), 254-260.
  • Russell, R. A. (2017). Fractions in origami pinwheels. Teaching Children Mathematics, 23(9), 532-540.
  • Senemoğlu, N. (2018). Gelişim öğrenme ve öğretim: Kuramdan uygulamaya. Ankara: Anı Yayıncılık.
  • Sezginsoy Şeker, B. (2016). Sınıf öğretmeni adayları tarafından oluşturulan origami etkinliklerinin değerlendirilmesi. Turkish Studies, 11(3), 1991-2008.
  • Shirouzu, H. (2013). Learning fractions through folding in an elementary face-to-face classroom. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs, & N. Law (Eds.), Productive multivocality in the analysis of group interactions (pp. 63-101). Springer, Boston, MA.
  • Shumakov, K., & Shumakov, Y. (2000). Left brain and right brain at origami training. Retrieved from https://www.oriland.com/oriversity/lecture.php?category=benefits&ID=02#Intro
  • Skillen, M. (2015). A paper folding activity. Australian Mathematics Teacher, 71(2), 40.
  • Sze, S. (2005). An analysis of constructivism and the ancient art of origami. Retrieved from https://files.eric.ed.gov/fulltext/ED490350.pdf
  • Tuğrul, B. ve Kavici, M. (2002). Kâğıt katlama sanatı ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(11), 1-17.
  • Turner, E. E., Junk, D. L., & Empson, S. B. (2007). The power of paper-folding tasks: Supporting multiplicative thinking and rich mathematical discussion. Teaching Children Mathematics, 13(6), 322-329.
  • Ünan, Z., Aksan, Z. ve Çelikler, D. (2017). İlköğretim matematik öğretmen adaylarının origami konusundaki farkındalıkları. The Fourth International Eurasian Educational Research Congress, (s. 62-66). Denizli: Pamukkale Üniversitesi.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264-272.
  • Wares, A. (2013). An application of the theory of multiple intelligences in mathematics classrooms in the context of origami. International Journal of Mathematical Education in Science and Technology, 44(1), 122-131.
  • Wares, A. (2014). Problem solving through paper folding. Australian Senior Mathematics Journal, 28(2), 60-63.
  • Wares, A. (2018). Pythagoras meets paper folding. Mathematics Teacher, 111(5), 400.
  • Wares, A., & Elstak, I. (2017). Origami, geometry and art. International Journal of Mathematical Education in Science and Technology, 48(2), 317-324.
  • Yavuz, N. F. ve Özyürek, A. (2018). Beden eğitimi ve spor etkinliklerinin okul öncesi dönem çocuklarının hareket becerileri üzerine etkisi. Karaelmas Eğitim Bilimleri Dergisi, 6, 40-50.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (6. bs.). Ankara: Seçkin Yayıncılık.
  • Yıldız, R. ve Bayram, S. (2006). Devinsel işlemlerin öğretimi. A. Şimşek (Ed.), İçerik türlerine dayalı öğretim içinde (s. 1-18). Ankara: Nobel Akademik Yayıncılık.
  • Yuzawa, M., & Bart, W. M. (2002). Young children’s learning of size comparison strategies: Effect of origami exercises. The Journal of Genetic Psychology, 163(4), 459-478.
  • Zhang, Y. Q. (2006). Proving the area formulas by paper-folding. Mathematics in School, 35(2), 12-14.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Seher Avcu

Ramazan Avcu

Yayımlanma Tarihi 26 Nisan 2019
Gönderilme Tarihi 14 Kasım 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Avcu, S., & Avcu, R. (2019). ORTAOKUL MATEMATİK ÖĞRETMENİ ADAYLARININ ORİGAMİ DERSİNDE EDİNDİKLERİ DENEYİMLER. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi(50), 136-166. https://doi.org/10.21764/maeuefd.482716