Araştırma Makalesi
BibTex RIS Kaynak Göster

Otizmli Hastalarda PTEN Ve POGZ Genlerinin Ekspresyon Profilleri

Yıl 2022, , 250 - 255, 31.12.2022
https://doi.org/10.30565/medalanya.1148353

Öz

Amaç: Otizm spektrum bozukluğu (OSB), karmaşık davranışsal fenotiplerle karakterize, heterojen bir grup nörogelişimsel bozukluktur. Uzun yıllar boyunca yapılan kapsamlı çalışmalara rağmen, OSB'nin nedenleri hala bilinmemektedir. PTEN ve POGZ genleri, OSB fenotipinden sorumlu olabilecek aday genler olarak gösterilmiştir. Otistik hastalarda PTEN ve POGZ genlerinin ekspresyon düzeylerini araştırmayı amaçladık.

Yöntem: OSB tanılı 50 hastada ve yaş-cinsiyet uyumlu 50 sağlıklı kontrolde PTEN ve POGZ gen ekspresyonları araştırıldı. Bu çalışma Erciyes Üniversitesi Genom ve Kök Hücre Merkezi'nde (GENKÖK) yapılmıştır.

Bulgular: POGZ geninin hastalarda kontrollere göre daha fazla eksprese olduğu ve otistik erkek hastalarda bu genin ekspresyonunun anlamlı olduğu bulundu. PTEN gen ekspresyonu istatistiksel olarak anlamlı değildi ancak hastalarda kontrollere göre daha düşük bulundu. Bu genlerin ekspresyonu ile bilişsel gerilik arasındaki ilişki ise anlamlı değildi.

Sonuç: Daha büyük hasta grupları ile diğer olası aday genlerin araştırılmasını ve sonuçların farklı ek klinik belirtilerle hastalarda karşılaştırılmasını önermekteyiz. 

Destekleyen Kurum

Erciyes Üniversitesi Bilimsel Araştırma Projeleri Bİrimi

Proje Numarası

TYL-2017-5789

Teşekkür

Yazarlar, katkılarından dolayı çalışmaya katılan hastalara teşekkür ederler. Authors, thanks to study participants for their contribution.

Kaynakça

  • 1. Sener EF, Taheri S, Sahin MC, Korkmaz Bayramov K, Maraşlı MK, Zararsız G, et al. Altered global mRNA expressions of pain and aggression related genes in the blood of children with autism spectrum disorders. J Mol Neurosci. 2019;67(1):89-96. doi: 10.1007/s12031-018-1213-0.
  • 2. Ning M, Daniels J, Schwartz J, Dunlap K, Washington P, Kalantarian H, et al. Identification and quantification of gaps in access to autism resources in the United States: An infodemiological study. J Med Internet Res. 2019;21(7):e13094. doi: 10.2196/13094.
  • 3. Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, et al. Investigation of gene regulatory networks associated with autism spectrum disorder based on miRNA expression in China. PLoS One. 2015;10(6):e0129052. doi: 10.1371/journal.pone.0129052.
  • 4. Geschwind DH. Advances in autism. Annu Rev Med 2009;60:367-80. doi: 10.1146/annurev.med.60.053107.121225.
  • 5. Jaini R, Wolf MR., Yu Q, King AT, FraizeJr TW, Eng C. Maternal genetics influences fetal neurodevelopment and postnatal autism spectrum disorder-like phenotype by modulating in utero immunosupression. Transl Psychiatry. 2021;11(1):348. doi: 10.1038/s41398-021-01472-x.
  • 6. Eapen V. Genetic basis of autism: Is there a way forward? Curr Opin Psychiatry. 2011;24(3):226-36. doi: 10.1097/YCO.0b013e328345927e.
  • 7. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11(7):490-502. doi: 10.1038/nrn2851.
  • 8. Chaste P, Lemaleer M. Autism risk factors: Genes, environment and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281-92. doi: 10.31887/DCNS.2012.14.3/pchaste.
  • 9. Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, et al. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: Toward an integrative model of a self-reinforcing loop. Front Psychiatry. 2019;10:366. doi: 10.3389/fpsyt.2019.00366.
  • 10. Vaccaro TDS, Sorrentino JM, Salvador S, Veit T, Souza DO, Almeida RF. Alterations in the microRNA of the blood of autism spectrum disorder patients: Effects on epigenetic regulation and potential biomarkers. Behav Sci (Basel). 2018;8(8):75. doi: 10.3390/bs8080075.
  • 11. Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci. 2019;76(7):1275-97. doi: 10.1007/s00018-018-2988-4.
  • 12. Hua R, Wei MP, Zhang C. The complex genetics in autism spectrum disorders. Sci China Life Sci. 2015;58(10):933-45. doi: 10.1007/s11427-015-4893-5.
  • 13. Yin J, Schaaf CP. Autism genetics-an overview. Prenat Diagn. 2017;37(1):14-30. doi: 10.1002/pd.4942.
  • 14. Skelton PD, Stan RV, Luikart BW. The role of PTEN in neurodevelopment. Mol Neuropsychiatry. 2020;5(Suppl 1):60-71. doi: 10.1159/000504782.
  • 15. Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, et al. Deletions of PTEN produces autism-like behavioral deficits and alterations in synaptic protein. Front Mol Neurosci. 2014;7:27. doi: 10.3389/fnmol.2014.00027.
  • 16. He L. Post-transcriptional regulation of PTEN dosage by non-coding RNAs. Sci Signal. 2014; 3(146):pe39. doi: 10.1126/scisignal.3146pe39.
  • 17. Govender D, Chetty R. Gene of the month: PTEN. J Clin Pathol. 2012;65(7):601-3. doi: 10.1136/jclinpath-2012-200711.
  • 18. Molinari F, Frattini M. Functions and regulation of the PTEN gene in colorectal cancer. Front Oncol. 2014;3:326. doi: 10.3389/fonc.2013.00326.
  • 19. Lv JW, Cheng TL, Qiu ZL, Zhou WH. Role of the PTEN signaling pathway in autism spectrum disorder. Neurosci Bull. 2013;29(6):773-8. doi: 10.1007/s12264-013-1382-3.
  • 20. Tan B, Zou Y, Zhang Y, Zhang R, Ou J, Shen Y, et al. A novel de novo POGZ mutation in a patient with intellectual disability. J Hum Genet. 2016;61(4):357-9. doi: 10.1038/jhg.2015.156.
  • 21. Matsumura K, Nakazawa T, Nagayasu K, Gotoda-Nishimura N, Kasai A, Hayata-Takano A, et al. de novo POGZ mutations in sporadic autism disrupt the DNA-binding activity of POGZ. J Mol Psychiatry. 2016;4:1. doi: 10.1186/s40303-016-0016-x.
  • 22. Fukai R, Hiraki Y, Yofune H, Tsurusaki Y, Nakashima M, Saitsu H, et al. A case of autism spectrum disorder arising from a de novo missense mutation in POGZ. J Hum Genet. 2015;60(5):277-9. doi: 10.1038/jhg.2015.13.
  • 23. Ye Y, Cho MT, Retterer K, Alexander N, Ben-Omran T, Al-Mureikhi M, et al. De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Cold Spring Harb Mol Case Stud. 2015;1(1):a000455. doi: 10.1101/mcs.a000455.
  • 24. Suliman-Lavie R, Title B, Cohen Y, Hamada N, Tal M, Tal N, et al. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior mice. Nat Commun. 2020;11(1):5836. doi: 10.1038/s41467-020-19577-0.
  • 25. Zhao W, Quan Y, Wu H, Han L, Bai T, Ma L, et al. POGZ de novo missense variants in neuropsychiatric disorders. Mol Genet Genomic Med. 2019;7(9):e900. doi: 10.1002/mgg3.900.
  • 26. Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2016;98(3):541-552. doi: 10.1016/j.ajhg.2016.02.004.
  • 27. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42(4):318-21. doi: 10.1136/jmg.2004.024646.
  • 28. Mayes SD, Calhoun SL, Murray MJ, Pearl A, Black A, Tierney CD. Final DSM-5 under-identifies mild autism spectrum disorder: Agreement between the DSM-5, CARS, CASD, and clinical diagnoses. Research in Autism Spectrum Disorders. 2014;8(2):68–73. doi: 10.1016/j.rasd.2013.11.002.
  • 29. Sener EF, Cikili Uytun M, Bayramov Korkmaz K, Zararsız G, Oztop DB, Canatan H, et al. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis. 2016;31(3):613-9. doi: 10.1007/s11011-016-9795-0.
  • 30. Clipperton-Allen AE, Page DT. Connecting genotype with behavioral phenotype in mouse models of autism associated with PTEN mutations. Cold Spring Harb Perspect Med. 2020;10(9):a037010. doi: 10.1101/cshperspect.a037010.
  • 31. Kaymakcalan H, Kaya İ, Binici NC, Nikerel E, Özbaran B, Aksoy MG, et al. Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly. Mol Genet Genomic Med. 2021;9(8):e1739. doi: 10.1002/mgg3.1739.
  • 32. Leslie NR, Longy M. Inherited PTEN mutations and the prediction of phenotype. Semin Cell Dev Biol. 2016;52:30-8. doi: 10.1016/j.semcdb.2016.01.030.
  • 33. Frazier TW. Autism spectrum disorder associated with germline heterozygous PTEN mutations. Cold Spring Harb Perspect Med. 2019;9(10):a037002. doi: 10.1101/cshperspect.a037002.
  • 34. Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, et al. Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism. Mol Autism. 2021;12(1):5. doi: 10.1186/s13229-020-00406-6.
  • 35. Steele M, Uljarevic M, Rached G. Psychiatric characteristics across individuals with PTEN mutations. Front Psychiatry. 2021;12:672070. doi: 10.3389/fpsyt.2021.672070.
  • 36. Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and phenotypic abnormalities in ındividuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. 2015;20(9):1132-8. doi: 10.1038/mp.2014.125.
  • 37. Tilot AK, Frazier TW, Eng C. Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics. 2015;12(3):609-19. doi: 10.1007/s13311-015-0356-8.
  • 38. De Rubeis S, He X, Goldberg AP,Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209-15. doi: 10.1038/nature13772.
  • 39. Gudmundsdottir B, Gudmundsson KO, Klarmann KD, Singh SK, Sun L, Singh S, et al. POGZ is required for silencing mouse embryonic β-like hemoglobin and human fetal hemoglobin expression. Cell Rep. 2018;23(11):3236-48. doi: 10.1016/j.celrep.2018.05.043.
  • 40. Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, et al. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol. 2010;12(7):719-27. doi: 10.1038/ncb2075.
  • 41. Matsumura K, Seiriki K, Okada S, Nagase M, Ayabe S, Yamada I, et al. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nat Commun. 2020;11(1):859. doi: 10.1038/s41467-020-14697-z.
  • 42. Petinou K, Minaidou D. Neurobiological bases of autism spectrum disorders and ımplications for early intervention: A brief overview. Folia Phoniatr Logop. 2017;69(1-2):38-42. doi: 10.1159/000479181.

Expression Profiles Of PTEN And POGZ Genes In Patients With Autism

Yıl 2022, , 250 - 255, 31.12.2022
https://doi.org/10.30565/medalanya.1148353

Öz

Aim: Autism spectrum disorder (ASD), a group of heterogeneous neurodevelopmental disorders, is characterized by complex behavioral phenotypes. Despite extensive studies over many years, the causes of ASD are still unknown. PTEN and POGZ genes are studied as candidate genes that may be responsible for the ASD phenotype. We aimed to investigate the expression levels of PTEN and POGZ genes in autistic patients.

Methods: Gene expressions of PTEN and POGZ were investigated in 50 ASD patients and 50 age and gender matched healthy controls. This study was conducted in the Erciyes University Genome and Stem Cell Center (GENKOK).

Results: POGZ gene expression was increased in patients compared to controls. According to gender, the expression results of the autistic male patients were significant. PTEN mRNA expression was not statistically significant but found to be lower in patients than in controls. The relationship between the expression of these genes and cognitive deficits was not significant.

Conclusion: We recommend investigating other possible candidate genes in larger cohorts and comparing the results with different additional cilinical findings in ASD.

Proje Numarası

TYL-2017-5789

Kaynakça

  • 1. Sener EF, Taheri S, Sahin MC, Korkmaz Bayramov K, Maraşlı MK, Zararsız G, et al. Altered global mRNA expressions of pain and aggression related genes in the blood of children with autism spectrum disorders. J Mol Neurosci. 2019;67(1):89-96. doi: 10.1007/s12031-018-1213-0.
  • 2. Ning M, Daniels J, Schwartz J, Dunlap K, Washington P, Kalantarian H, et al. Identification and quantification of gaps in access to autism resources in the United States: An infodemiological study. J Med Internet Res. 2019;21(7):e13094. doi: 10.2196/13094.
  • 3. Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, et al. Investigation of gene regulatory networks associated with autism spectrum disorder based on miRNA expression in China. PLoS One. 2015;10(6):e0129052. doi: 10.1371/journal.pone.0129052.
  • 4. Geschwind DH. Advances in autism. Annu Rev Med 2009;60:367-80. doi: 10.1146/annurev.med.60.053107.121225.
  • 5. Jaini R, Wolf MR., Yu Q, King AT, FraizeJr TW, Eng C. Maternal genetics influences fetal neurodevelopment and postnatal autism spectrum disorder-like phenotype by modulating in utero immunosupression. Transl Psychiatry. 2021;11(1):348. doi: 10.1038/s41398-021-01472-x.
  • 6. Eapen V. Genetic basis of autism: Is there a way forward? Curr Opin Psychiatry. 2011;24(3):226-36. doi: 10.1097/YCO.0b013e328345927e.
  • 7. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11(7):490-502. doi: 10.1038/nrn2851.
  • 8. Chaste P, Lemaleer M. Autism risk factors: Genes, environment and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281-92. doi: 10.31887/DCNS.2012.14.3/pchaste.
  • 9. Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, et al. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: Toward an integrative model of a self-reinforcing loop. Front Psychiatry. 2019;10:366. doi: 10.3389/fpsyt.2019.00366.
  • 10. Vaccaro TDS, Sorrentino JM, Salvador S, Veit T, Souza DO, Almeida RF. Alterations in the microRNA of the blood of autism spectrum disorder patients: Effects on epigenetic regulation and potential biomarkers. Behav Sci (Basel). 2018;8(8):75. doi: 10.3390/bs8080075.
  • 11. Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci. 2019;76(7):1275-97. doi: 10.1007/s00018-018-2988-4.
  • 12. Hua R, Wei MP, Zhang C. The complex genetics in autism spectrum disorders. Sci China Life Sci. 2015;58(10):933-45. doi: 10.1007/s11427-015-4893-5.
  • 13. Yin J, Schaaf CP. Autism genetics-an overview. Prenat Diagn. 2017;37(1):14-30. doi: 10.1002/pd.4942.
  • 14. Skelton PD, Stan RV, Luikart BW. The role of PTEN in neurodevelopment. Mol Neuropsychiatry. 2020;5(Suppl 1):60-71. doi: 10.1159/000504782.
  • 15. Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, et al. Deletions of PTEN produces autism-like behavioral deficits and alterations in synaptic protein. Front Mol Neurosci. 2014;7:27. doi: 10.3389/fnmol.2014.00027.
  • 16. He L. Post-transcriptional regulation of PTEN dosage by non-coding RNAs. Sci Signal. 2014; 3(146):pe39. doi: 10.1126/scisignal.3146pe39.
  • 17. Govender D, Chetty R. Gene of the month: PTEN. J Clin Pathol. 2012;65(7):601-3. doi: 10.1136/jclinpath-2012-200711.
  • 18. Molinari F, Frattini M. Functions and regulation of the PTEN gene in colorectal cancer. Front Oncol. 2014;3:326. doi: 10.3389/fonc.2013.00326.
  • 19. Lv JW, Cheng TL, Qiu ZL, Zhou WH. Role of the PTEN signaling pathway in autism spectrum disorder. Neurosci Bull. 2013;29(6):773-8. doi: 10.1007/s12264-013-1382-3.
  • 20. Tan B, Zou Y, Zhang Y, Zhang R, Ou J, Shen Y, et al. A novel de novo POGZ mutation in a patient with intellectual disability. J Hum Genet. 2016;61(4):357-9. doi: 10.1038/jhg.2015.156.
  • 21. Matsumura K, Nakazawa T, Nagayasu K, Gotoda-Nishimura N, Kasai A, Hayata-Takano A, et al. de novo POGZ mutations in sporadic autism disrupt the DNA-binding activity of POGZ. J Mol Psychiatry. 2016;4:1. doi: 10.1186/s40303-016-0016-x.
  • 22. Fukai R, Hiraki Y, Yofune H, Tsurusaki Y, Nakashima M, Saitsu H, et al. A case of autism spectrum disorder arising from a de novo missense mutation in POGZ. J Hum Genet. 2015;60(5):277-9. doi: 10.1038/jhg.2015.13.
  • 23. Ye Y, Cho MT, Retterer K, Alexander N, Ben-Omran T, Al-Mureikhi M, et al. De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Cold Spring Harb Mol Case Stud. 2015;1(1):a000455. doi: 10.1101/mcs.a000455.
  • 24. Suliman-Lavie R, Title B, Cohen Y, Hamada N, Tal M, Tal N, et al. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior mice. Nat Commun. 2020;11(1):5836. doi: 10.1038/s41467-020-19577-0.
  • 25. Zhao W, Quan Y, Wu H, Han L, Bai T, Ma L, et al. POGZ de novo missense variants in neuropsychiatric disorders. Mol Genet Genomic Med. 2019;7(9):e900. doi: 10.1002/mgg3.900.
  • 26. Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2016;98(3):541-552. doi: 10.1016/j.ajhg.2016.02.004.
  • 27. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42(4):318-21. doi: 10.1136/jmg.2004.024646.
  • 28. Mayes SD, Calhoun SL, Murray MJ, Pearl A, Black A, Tierney CD. Final DSM-5 under-identifies mild autism spectrum disorder: Agreement between the DSM-5, CARS, CASD, and clinical diagnoses. Research in Autism Spectrum Disorders. 2014;8(2):68–73. doi: 10.1016/j.rasd.2013.11.002.
  • 29. Sener EF, Cikili Uytun M, Bayramov Korkmaz K, Zararsız G, Oztop DB, Canatan H, et al. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis. 2016;31(3):613-9. doi: 10.1007/s11011-016-9795-0.
  • 30. Clipperton-Allen AE, Page DT. Connecting genotype with behavioral phenotype in mouse models of autism associated with PTEN mutations. Cold Spring Harb Perspect Med. 2020;10(9):a037010. doi: 10.1101/cshperspect.a037010.
  • 31. Kaymakcalan H, Kaya İ, Binici NC, Nikerel E, Özbaran B, Aksoy MG, et al. Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly. Mol Genet Genomic Med. 2021;9(8):e1739. doi: 10.1002/mgg3.1739.
  • 32. Leslie NR, Longy M. Inherited PTEN mutations and the prediction of phenotype. Semin Cell Dev Biol. 2016;52:30-8. doi: 10.1016/j.semcdb.2016.01.030.
  • 33. Frazier TW. Autism spectrum disorder associated with germline heterozygous PTEN mutations. Cold Spring Harb Perspect Med. 2019;9(10):a037002. doi: 10.1101/cshperspect.a037002.
  • 34. Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, et al. Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism. Mol Autism. 2021;12(1):5. doi: 10.1186/s13229-020-00406-6.
  • 35. Steele M, Uljarevic M, Rached G. Psychiatric characteristics across individuals with PTEN mutations. Front Psychiatry. 2021;12:672070. doi: 10.3389/fpsyt.2021.672070.
  • 36. Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and phenotypic abnormalities in ındividuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. 2015;20(9):1132-8. doi: 10.1038/mp.2014.125.
  • 37. Tilot AK, Frazier TW, Eng C. Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics. 2015;12(3):609-19. doi: 10.1007/s13311-015-0356-8.
  • 38. De Rubeis S, He X, Goldberg AP,Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209-15. doi: 10.1038/nature13772.
  • 39. Gudmundsdottir B, Gudmundsson KO, Klarmann KD, Singh SK, Sun L, Singh S, et al. POGZ is required for silencing mouse embryonic β-like hemoglobin and human fetal hemoglobin expression. Cell Rep. 2018;23(11):3236-48. doi: 10.1016/j.celrep.2018.05.043.
  • 40. Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, et al. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol. 2010;12(7):719-27. doi: 10.1038/ncb2075.
  • 41. Matsumura K, Seiriki K, Okada S, Nagase M, Ayabe S, Yamada I, et al. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nat Commun. 2020;11(1):859. doi: 10.1038/s41467-020-14697-z.
  • 42. Petinou K, Minaidou D. Neurobiological bases of autism spectrum disorders and ımplications for early intervention: A brief overview. Folia Phoniatr Logop. 2017;69(1-2):38-42. doi: 10.1159/000479181.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İç Hastalıkları
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Tezcan 0000-0003-2216-4084

Elif Funda Şener 0000-0002-5644-5442

Esra Demirci 0000-0002-8424-4947

Nilfer Şahin 0000-0001-7120-1561

Zuhal Hamurcu 0000-0002-0711-4014

Didem Öztop 0000-0003-3189-2112

Proje Numarası TYL-2017-5789
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 26 Temmuz 2022
Kabul Tarihi 8 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

Vancouver Tezcan T, Şener EF, Demirci E, Şahin N, Hamurcu Z, Öztop D. Expression Profiles Of PTEN And POGZ Genes In Patients With Autism. Acta Med. Alanya. 2022;6(3):250-5.

9705 

Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.