Araştırma Makalesi
BibTex RIS Kaynak Göster

The relationship of learning and memory disfunction with NEURL1 and RGS14 genes in patients with autism spectrum disorders

Yıl 2022, Cilt: 6 Sayı: 2, 207 - 213, 20.08.2022
https://doi.org/10.30565/medalanya.1136820

Öz

Aim: We aimed to evaluate the relationship between learning-memory difficulties and NEURL1 and RGS14 genes in patients with autism spectrum disorders (ASD).

Method: Forty children with ASD (20 ASD, 20 high functioning autism (HFA)) and 20 healthy controls were enrolled in this study. NEURL1 and RGS14 gene expressions in blood samples of volunteers were assessed by quantitative Real-Time PCR (qRT-PCR). The clinical and demographical findings in patients were determined and examined in relation to the gene expressions.

Results: According to our findings, NEURL1 gene expression was decreased in both patient groups compared to the control (p<0.05). No significant difference between the groups in terms of the RGS14 gene (p>0.05). A statistically significant correlation was found between learning and memory difficulties and RGS14 gene expression in HFA patients (p=0.045). A positive correlation was observed between NEURL1 and RGS14 gene expressions of ASD patients (p=0.032, r=0,59).

Conclusion: In this study, we showed that the NEURL1 gene may affect learning and memory difficulties in ASD patients. Nonetheless, we recommend that both genes be studied with more patients and preferably with brain tissues. These genes were evaluated for the first time in a clinical study on autism, and we believe that they will contribute to the literature in this respect. 

Destekleyen Kurum

Erciyes University Scientific Investigations Unit

Proje Numarası

TYL-2013-4657

Teşekkür

Authors, thanks to Erciyes University Scientific Investigations Unit for their supported.

Kaynakça

  • 1. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front. Neurosci. 2017; 10:601. https://doi.org/10.3389/fnins.2016.00601
  • 2. Charman T, Bair G. Practitioner review: Diagnosis of autism spectrum disorder in 2‐and 3‐year‐old children. J Child Psychol Psychiatry. 2002;43(3):289-305. https://doi.org/10.1111/1469-7610.00022
  • 3. Jacobs D, Steyaert J, Dierickx K, Hens K. Physician view and experience of the diagnosis of autism spectrum disorder in young children. Front. Psychiatry. 2019; 10:372. https://doi.org/10.3389/fpsyt.2019.00372
  • 4. Rao PA, Beidel DC, Murray MJ. Social skills interventions for children with Asperger’s syndrome or high-functioning autism: A review and recommendations. J Autism Dev Disord. 2008;38(2):353-361. https://doi.org/10.1007/s10803-007-0402-4
  • 5. American Psychiatric Association, D. S., & American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5). Washington, DC: American psychiatric association.2013
  • 6. Misra V. The social brain network and autism. Ann Neurosci. 2014;21(2):69. https://doi.org/10.5214/ans.0972.7531.210208
  • 7. Goh S, Peterson BS. Imaging evidence for disturbances in multiple learning and memory systems in persons with autism spectrum disorders. Dev Med Child Neurol. 2012;54(3): 208-213. https://doi.org/10.1111/j.1469-8749.2011.04153.x
  • 8. Landsiedel J, Williams DM, Abbot-Smith K. A meta-analysis and critical review of prospective memory in autism spectrum disorder. J Autism Dev Disord.2017;47(3): 646-666. https://doi.org/10.1007/s10803-016-2987-y
  • 9. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell.2014;157(1): 163-186. https://doi.org/10.1016/j.cell.2014.03.001
  • 10. Kozlov E, Shidlovskii YV, Gilmutdinov R, Schedl P, Zhukova M. The role of CPEB family proteins in the nervous system function in the norm and pathology. Cell Biosci. 2021;11(1):1-14. https://doi.org/10.1186/s13578-021-00577-6
  • 11. Qu WR, Sun QH, Liu QQ, Jin HJ, Cui RJ, Yang W et al. Role of CPEB3 protein in learning and memory: new insights from synaptic plasticity. Aging. 2020;12(14): 15169. https://doi.org/10.18632/aging.103404
  • 12. Parras A, Anta H, Santos-Galindo M, Swarup V, Elorza A, Nieto-González JL et al. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis- splicing. Nature.2018;560(7719):441-446. https://doi.org/10.1038/s41586-018-0423-5
  • 13. Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol. 2014; 30:393-415. https://doi.org/10.1146/annurev-cellbio-101011-155831
  • 14. Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell. 2011;147(6):1369-1383. https://doi.org/10.1016/j.cell.2011.09.056
  • 15. Chao HW, Tsai LY, Lu YL, Lin PY, Huang WH, Chou HJ et al. Deletion of CPEB3 enhances hippocampus-dependent memory via increasing expressions of PSD95 and NMDA receptors. J. Neurosci. 2013;33(43):17008-17022. https://doi.org/10.1523/JNEUROSCI.3043-13.2013
  • 16. Taal K, Tuvikene J, Rullinkov G, Piirsoo M, Sepp M, Neuman T et al. Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Sci Rep. 2019; 9(1): 1-12. https://doi.org/10.1038/s41598-019-43069-x
  • 17. Fioriti L, Myers C, Huang YY, Li X, Stephan JS, Trifilieff P et al. The persistence of hippocampal-based memory requires protein synthesis mediated by the prion-like protein CPEB3. Neuron. 2015;86(6):1433-1448. https://doi.org/10.1016/j.neuron.2015.05.021
  • 18. Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP et al. RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci U S A. 2010;107(39):16994-16998. https://doi.org/10.1073/pnas.1005362107
  • 19. Vellano CP, Lee SE, Dudek SM, Hepler JR. RGS14 at the interface of hippocampal signaling and synaptic plasticity. Trends Pharmacol Sci. 2011;32(11):666-674. https://doi.org/10.1016/j.tips.2011.07.005
  • 20. Squires KE, Gerber KJ, Pare JF, Branch MR, Smith Y, Hepler JR. Regulator of G protein signaling 14 (RGS14) is expressed pre-and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct. 2018;223(1): 233-253. https://doi.org/10.1007/s00429-017-1487-y
  • 21. Zhang Z, Peng P, Zhang D. Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies. J Autism Dev Disord. 2020;50(11). https://doi.org/10.1007/s10803-020-04461-z
  • 22. Gąssowska-Dobrowolska M, Kolasa-Wołosiuk A, Cieślik M, Dominiak A, Friedland K, Adamczyk A. Alterations in tau protein level and phosphorylation state in the brain of the autistic-like rats induced by prenatal exposure to valproic acid. Int. J. Mol. Sci. 2021;22(6):3209. https://doi.org/10.3390/ijms22063209
  • 23. Evans PR, Parra-Bueno P, Smirnov MS, Lustberg DJ, Dudek SM, Hepler JR et al. RGS14 restricts plasticity in hippocampal CA2 by limiting postsynaptic calcium signaling. eNeuro. 2018;5(3). http://dx.doi.org/10.1523/ENEURO.0353-17.2018
  • 24. Vogler C, Spalek K, Aerni A, Demougin P, Müller A, Huynh KD, Papassotiropoulos A, Quervain D. CPEB3 is associated with human episodic memory. Front. Behav. Neurosci. 2009; 3:4. https://doi.org/10.3389/neuro.08.004.2009
  • 25. Pavlopoulos E, Anezaki M, Skoulakis EM. Neuralized is expressed in the α/β lobes of adult Drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proc Natl Acad Sci U S A. 2008;105(38):14674-14679. https://doi.org/10.1073/pnas.0801605105

Otizm Spektrum Bozukluğu Olan Hastalarda Öğrenme ve Hafıza Bozukluklarının NEURL1 ve RGS14 Genleri ile İlişkisi

Yıl 2022, Cilt: 6 Sayı: 2, 207 - 213, 20.08.2022
https://doi.org/10.30565/medalanya.1136820

Öz

Amaç: Bu çalışmada OSB hastalarında öğrenme ve hafıza güçlükleri ile NEURL1 ve RGS14 genleri arasındaki ilişkiyi değerlendirmeyi amaçladık.

Yöntem: Bu çalışmaya OSB'li 40 çocuk (20 OSB, 20 yüksek fonksiyonlu otizm (HFA)) ve 20 sağlıklı kontrol dahil edildi. Gönüllülerin kan örneklerinde NEURL1 ve RGS14 genlerinin ekspresyonları kantitatif Real-Time PCR (qRT-PCR) yöntemi ile değerlendirildi. Hastalardaki klinik ve demografik bulgular belirlenerek gen ekspresyonları ile ilişkisi incelendi.

Bulgular: Bulgularımıza göre her iki hasta grubunda da kontrol grubuna göre NEURL1 gen ekspresyonu azaldı (p<0.05). RGS14 geni açısından gruplar arasında anlamlı fark yoktu (p>0.05). HFA hastalarında öğrenme ve bellek güçlükleri ile RGS14 gen ekspresyonu arasında istatistiksel olarak anlamlı bir ilişki bulundu (p = 0.045). OSB hastalarının NEURL1 ve RGS14 gen ekspresyonları arasında pozitif korelasyon görüldü (p=0.032, r=0,59).

Sonuç: Bu çalışmada NEURL1 geninin OSB hastalarında öğrenme ve hafıza güçlüğünü etkileyebileceğini gösterdik. Ancak, her iki genin daha fazla hasta ve tercihen beyin dokuları ile çalışılmasını öneriyoruz. Bu genler ilk kez otizmle ilgili bir klinik çalışmada değerlendirilmiştir, bu açıdan literatüre katkı sağlayacağına inanıyoruz.

Proje Numarası

TYL-2013-4657

Kaynakça

  • 1. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front. Neurosci. 2017; 10:601. https://doi.org/10.3389/fnins.2016.00601
  • 2. Charman T, Bair G. Practitioner review: Diagnosis of autism spectrum disorder in 2‐and 3‐year‐old children. J Child Psychol Psychiatry. 2002;43(3):289-305. https://doi.org/10.1111/1469-7610.00022
  • 3. Jacobs D, Steyaert J, Dierickx K, Hens K. Physician view and experience of the diagnosis of autism spectrum disorder in young children. Front. Psychiatry. 2019; 10:372. https://doi.org/10.3389/fpsyt.2019.00372
  • 4. Rao PA, Beidel DC, Murray MJ. Social skills interventions for children with Asperger’s syndrome or high-functioning autism: A review and recommendations. J Autism Dev Disord. 2008;38(2):353-361. https://doi.org/10.1007/s10803-007-0402-4
  • 5. American Psychiatric Association, D. S., & American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5). Washington, DC: American psychiatric association.2013
  • 6. Misra V. The social brain network and autism. Ann Neurosci. 2014;21(2):69. https://doi.org/10.5214/ans.0972.7531.210208
  • 7. Goh S, Peterson BS. Imaging evidence for disturbances in multiple learning and memory systems in persons with autism spectrum disorders. Dev Med Child Neurol. 2012;54(3): 208-213. https://doi.org/10.1111/j.1469-8749.2011.04153.x
  • 8. Landsiedel J, Williams DM, Abbot-Smith K. A meta-analysis and critical review of prospective memory in autism spectrum disorder. J Autism Dev Disord.2017;47(3): 646-666. https://doi.org/10.1007/s10803-016-2987-y
  • 9. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell.2014;157(1): 163-186. https://doi.org/10.1016/j.cell.2014.03.001
  • 10. Kozlov E, Shidlovskii YV, Gilmutdinov R, Schedl P, Zhukova M. The role of CPEB family proteins in the nervous system function in the norm and pathology. Cell Biosci. 2021;11(1):1-14. https://doi.org/10.1186/s13578-021-00577-6
  • 11. Qu WR, Sun QH, Liu QQ, Jin HJ, Cui RJ, Yang W et al. Role of CPEB3 protein in learning and memory: new insights from synaptic plasticity. Aging. 2020;12(14): 15169. https://doi.org/10.18632/aging.103404
  • 12. Parras A, Anta H, Santos-Galindo M, Swarup V, Elorza A, Nieto-González JL et al. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis- splicing. Nature.2018;560(7719):441-446. https://doi.org/10.1038/s41586-018-0423-5
  • 13. Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol. 2014; 30:393-415. https://doi.org/10.1146/annurev-cellbio-101011-155831
  • 14. Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell. 2011;147(6):1369-1383. https://doi.org/10.1016/j.cell.2011.09.056
  • 15. Chao HW, Tsai LY, Lu YL, Lin PY, Huang WH, Chou HJ et al. Deletion of CPEB3 enhances hippocampus-dependent memory via increasing expressions of PSD95 and NMDA receptors. J. Neurosci. 2013;33(43):17008-17022. https://doi.org/10.1523/JNEUROSCI.3043-13.2013
  • 16. Taal K, Tuvikene J, Rullinkov G, Piirsoo M, Sepp M, Neuman T et al. Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Sci Rep. 2019; 9(1): 1-12. https://doi.org/10.1038/s41598-019-43069-x
  • 17. Fioriti L, Myers C, Huang YY, Li X, Stephan JS, Trifilieff P et al. The persistence of hippocampal-based memory requires protein synthesis mediated by the prion-like protein CPEB3. Neuron. 2015;86(6):1433-1448. https://doi.org/10.1016/j.neuron.2015.05.021
  • 18. Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP et al. RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci U S A. 2010;107(39):16994-16998. https://doi.org/10.1073/pnas.1005362107
  • 19. Vellano CP, Lee SE, Dudek SM, Hepler JR. RGS14 at the interface of hippocampal signaling and synaptic plasticity. Trends Pharmacol Sci. 2011;32(11):666-674. https://doi.org/10.1016/j.tips.2011.07.005
  • 20. Squires KE, Gerber KJ, Pare JF, Branch MR, Smith Y, Hepler JR. Regulator of G protein signaling 14 (RGS14) is expressed pre-and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct. 2018;223(1): 233-253. https://doi.org/10.1007/s00429-017-1487-y
  • 21. Zhang Z, Peng P, Zhang D. Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies. J Autism Dev Disord. 2020;50(11). https://doi.org/10.1007/s10803-020-04461-z
  • 22. Gąssowska-Dobrowolska M, Kolasa-Wołosiuk A, Cieślik M, Dominiak A, Friedland K, Adamczyk A. Alterations in tau protein level and phosphorylation state in the brain of the autistic-like rats induced by prenatal exposure to valproic acid. Int. J. Mol. Sci. 2021;22(6):3209. https://doi.org/10.3390/ijms22063209
  • 23. Evans PR, Parra-Bueno P, Smirnov MS, Lustberg DJ, Dudek SM, Hepler JR et al. RGS14 restricts plasticity in hippocampal CA2 by limiting postsynaptic calcium signaling. eNeuro. 2018;5(3). http://dx.doi.org/10.1523/ENEURO.0353-17.2018
  • 24. Vogler C, Spalek K, Aerni A, Demougin P, Müller A, Huynh KD, Papassotiropoulos A, Quervain D. CPEB3 is associated with human episodic memory. Front. Behav. Neurosci. 2009; 3:4. https://doi.org/10.3389/neuro.08.004.2009
  • 25. Pavlopoulos E, Anezaki M, Skoulakis EM. Neuralized is expressed in the α/β lobes of adult Drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proc Natl Acad Sci U S A. 2008;105(38):14674-14679. https://doi.org/10.1073/pnas.0801605105
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İç Hastalıkları
Bölüm Araştırma Makalesi
Yazarlar

Hamiyet Ecıroglu 0000-0002-3555-3946

Elif Funda Şener 0000-0002-5644-5442

Didem Behice Öztop 0000-0003-3189-2112

Sevgi Özmen Bu kişi benim 0000-0002-7545-2824

Dilek Kaan 0000-0003-3622-2249

Yusuf Özkul 0000-0002-4212-5763

Proje Numarası TYL-2013-4657
Erken Görünüm Tarihi 20 Ağustos 2022
Yayımlanma Tarihi 20 Ağustos 2022
Gönderilme Tarihi 29 Haziran 2022
Kabul Tarihi 23 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 2

Kaynak Göster

Vancouver Ecıroglu H, Şener EF, Öztop DB, Özmen S, Kaan D, Özkul Y. The relationship of learning and memory disfunction with NEURL1 and RGS14 genes in patients with autism spectrum disorders. Acta Med. Alanya. 2022;6(2):207-13.

9705 

Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.