Derleme
BibTex RIS Kaynak Göster
Yıl 2023, , 54 - 62, 27.06.2023
https://doi.org/10.58626/menba.1312262

Öz

Kaynakça

  • Alaee M., Arias P., Sjodin A., Bergman A. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29(6):683–689. doi:10.1016/S0160-4120(03)00121-1
  • Andrady A. L. (2011). Microplastics in the marine environment. Mar Pollut Bull 62(8): 1596–1605. doi:10.1016/j.marpolbul.2011.05.030
  • Arvidsson R. (2012). Contributions to emissions, exposure and risk assessment of nanomaterials. Doctoral Thesis, Chalmers University of Technology
  • Baner A. L., Piringer O. (2007). Preservation of quality through packaging. In: Plastic packaging materials for food. Wiley-VCH Verlag GmbH, Weinheim, pp 1–8. doi:10.1002/9783527613281.ch01 Bejgarn S., MacLeod M., Bogdal C., Breitholtz M. (2015). Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132: 114–119. doi:10.1016/j.chemosphere.2015.03.010
  • Bern L. (1990). Size-related discrimination of nutritive and inert particles by freshwater zooplankton. J Plankton Res 12(5):1059–1067. doi:10.1093/plankt/12.5.1059
  • Besseling E., Wegner A., Foekema E. M., van den Heuvel-Greve M. J., Koelmans A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the Lugworm Arenicola marina (L.) Environ Sci Technol 47(1):593–600. doi:10.1021/es302763x
  • Bilotta G. S., Brazier R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42(12):2849–2861. doi:10.1016/j.watres.2008.03.018
  • Boxall A. B., Chaudhry M. Q., Sinclair C. J., Jones A., Aitken R., Jefferson B., Watts C. (2007). Current and future predicted environmental exposure to engineered nanoparticles. Report by Central Science Laboratory for the Department of Environment Food and Rural Affairs
  • Bradley E. L., Driffield M., Harmer N., Oldring P. K. T., Castle L. (2008). Identification of potential migrants in epoxy phenolic can coatings. Int J Polym Anal Charact 13(3):200–223. doi:10.1080/10236660802070512 Bradley L. E., Driffield M., Guthrie J., Harmer N., Oldring T. P. K., Castle L. (2009). Analytical approaches to identify potential migrants in polyester-polyurethane can coatings. Food Addit Contam Part A 26(12):1602–1610. doi:10.1080/19440040903252256
  • Brandsch J., Piringer O. (2008). Characteristics of plastic materials. In: Plastic packaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 15–61. doi:10.1002/9783527621422.ch2
  • Brennholt N., Heß M., Reifferscheid G. (2017). Freshwater Microplastics: Challenges for Regulation and Management. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-5_12
  • Brodhagen M., Peyron M., Miles C., Inglis D. A. (2015). Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3): 1039–1056. doi:10.1007/s00253-014-6267-5
  • Browne M. A., Crump P., Niven S. J., Teuten E., Tonkin A., Galloway T., Thompson R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. doi:10.1021/es201811s
  • Desai M. P., Labhasetwar V., Walter E., Levy R. J., Amidon G. L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573
  • Dhawan A., Pandey A., Sharma V. (2011). Toxicity assessment of engineered nanomaterials: resolving the challenges. J Biomed Nanotechnol 7(1):6–7. doi:10.1166/jbn.2011.1173
  • Dris R., Gasperi J., Tassin B. (2017). Sources and fate of microplastics in urban areas: a focus on Paris Megacity. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-5_4
  • Eerkes-Medrano D., Thompson R. C., Aldridge D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. doi:10.1016/j.watres.2015.02.012
  • European Commission (2002). Methyloxirane (propylene oxide): summary risk assessment report. Institute for Health and Consumer Protection-European Chemicals Bureau
  • Farrell P., Nelson K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) Environ Pollut 177:1–3 GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection Reports and studies 90
  • Gigault J., Pedrono B., Maxit B., Ter Halle A. (2016). Marine plastic litter: the unanalyzed nanofraction. Environ Sci Nano 3(2):346–350. doi:10.1039/c6en00008h
  • Gottschalk F., Sonderer T., Scholz R. W., Nowack B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553
  • Green D. S., Boots B., Sigwart J., Jiang S., Rocha C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 208:426–434. doi:10.1016/j.envpol.2015.10.010
  • Handy R. D., Owen R., Valsami-Jones E. (2008). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325. doi:10.1007/s10646-008-0206-0
  • Harrad S., Abdallah M. A-E. , Rose N. L., Turner S. D., Davidson T. A. (2009). Current-use brominated flame betardants in water, sediment, and fish from English lakes. Environ Sci Technol 43(24):9077–9083. doi:10.1021/es902185u
  • Harrison J. P., Schratzberger M., Sapp M., Osborn A. M. (2014). Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14(232):014–0232. doi:10.1186/s12866-014-0232-4
  • Klein S., Worch E., Knepper T. P. (2015). Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany. Environ Sci Technol 49(10): 6070–6076. doi:10.1021/acs.est.5b00492
  • Klein S., Dimzon I. K., Eubeler J., Knepper T. P. (2017). Analysis, occurrence, and degradation of microplastics in the aqueous environment. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-5_3 Klemchuk P. P. (1990). Degradable plastics – a critical-review. Polym Degrad Stab 27(2): 183–202
  • Kyrikou I., Briassoulis D. (2007). Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150. doi:10.1007/s10924-007-0053-8
  • Lambert S., Sinclair C. J., Bradley E. L., Boxall A. B. A. (2013). Effects of environmental conditions on latex dergadation in aquatic systems. Sci Total Environ 447:225–234. doi:10.1016/j.scitotenv.2012.12.067
  • Lambert S, Sinclair C. J., Boxall A. B. A. (2014). Occurrence, degradation and effects of polymerbased materials in the environment. Rev Environ Contam Toxicol 227:1-53. doi:10.1007/978-3-319-01327-5_1
  • Lambert S. (2015). Biopolymers and their application as biodegradable plastics. In: Kalia CV (ed) Microbial factories: biodiversity, biopolymers, bioactive molecules, vol 2. Springer India, New Delhi, pp 1–9. doi:10.1007/978-81-322-2595-9_1
  • Lambert S., Wagner M. (2016a). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268. doi:10.1016/j.chemosphere.2015.11.078
  • Lambert S., Wagner M. (2016b). Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517. doi:10.1016/j.chemosphere.2016.07.042
  • Lambert, S., & Wagner, M. (2018). Microplastics are contaminants of emerging concern in freshwater environments: an overview. Springer International Publishing.
  • Lithner D., Damberg J., Dave G., Larsson A. (2009). Leachates from plastic consumer products – screening for toxicity with Daphnia magna. Chemosphere 74(9):1195–1200. doi:10.1016/j.chemosphere.2008.11.022
  • Lithner D., Nordensvan I., Dave G. (2012). Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ Sci Pollut Res 19(5):1763–1772. doi:10.1007/s11356-011-0663-5
  • Liu E. K., He W. Q., Yan C. R. (2014). ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environ Res Lett 9(9):091001. doi:10.1088/1748-9326/9/9/091001 Mattsson K., Hansson L. A., Cedervall T. (2015). Nano-plastics in the aquatic environment. Environ Sci Process Impacts 17:1712–1721. doi:10.1039/c5em00227c
  • Muncke J. (2009) Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ 407(16):4549–4559. doi:10.1016/j.scitotenv.2009.05.006
  • Musee N. (2011) .Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30(9):1181–1195. doi:10.1177/0960327110391387
  • Nguyen Phuc T., Matsui Y., Fujiwara T. (2011). Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam. Environ Monit Assess 175(1–4):23–35. doi:10.1007/s10661-010-1490-8
  • Nizzetto L., Langaas S., Futter M. (2016). Pollution: Do microplastics spill on to farm soils? Nature 537(7621):488–488. doi:10.1038/537488b
  • Njeru J. (2006). The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum 37(6):1046–1058
  • Nowack B., Bucheli T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22. doi:10.1016/j.envpol.2007.06.006
  • Oberdörster E., Zhu S., Blickley T. M., McClellan-Green P., Haasch M. L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44(6):1112–1120. doi:10.1016/j.carbon.2005.11.008
  • Ogonowski M., Schur C., Jarsen A., Gorokhova E. (2016). The effects of natural and anthropogenic microparticles on individual Fitness in Daphnia magna. PLoS One 11(5):e0155063 Phuong N. N., Zalouk-Vergnoux A., Poirier L., Kamari A., Ch^atel A., Mouneyrac C., Lagarde F. (2016). Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environ Pollut 211:111–123. doi:10.1016/j.envpol.2015.12.035
  • Rillig M. C. (2012). Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46 (12):6453–6454. doi:10.1021/es302011r
  • Scherer C., Weber A., Lambert S., Wagner M. (2017). Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer Nature, Heidelberg. doi:10.1007/978-3-319-61615-5_8
  • Seco Pon J. P., Becherucci M. E. (2012). Spatial and temporal variations of urban litter in Mar del Plata, the major coastal city of Argentina. Waste Manag 32(2):343–348. doi:10.1016/j.wasman.2011.10.012
  • Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental pollution, 185, 77-83. doi: 10.1016/j.envpol.2013.10.013
  • Stevenson K., Stallwood B., Hart A. G. (2008.) Tire rubber recycling and bioremediation: a review. Biorem J 12(1):1–11. doi:10.1080/10889860701866263
  • Syberg K., Khan F. R., Selck H., Palmqvist A., Banta G. T., Daley J., Sano L., Duhaime M. B. (2015). Microplastics: addressing ecological risk through lessons learned. Environ Toxicol Chem 34(5):945–953. doi:10.1002/etc.2914 Vlachopoulos J., Strutt D. (2003). Polymer processing. Mater Sci Technol 19(9):1161–1169. doi:10.1179/026708303225004738
  • Wagner M., Scherer C., Alvarez-Mu~noz D., Brennholt N., Bourrain X., Buchinger S., Fries E., Grosbois C., Klasmeier J., Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak A, Winther-Nielsen M, Reifferscheid G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26(1):1–9. doi:10.1186/s12302-014-0012-7
  • Xu G, Wang QH, Gu QB, Cao YZ, Du XM, Li FS (2006a). Contamination characteristics and degradation behavior of low-density polyethylene film residues in typical farmland soils of China. J Environ Sci Health Part B 41(2):189–199. doi:10.1080/03601230500365069
  • Xu J, Wang P, Guo WF, Dong JX, Wang L, Dai SG (2006b). Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere 65(9):1445–1451. doi:10.1016/j.chemosphere.2006.04.042
  • Zbyszewski M, Corcoran PL (2011). Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220(1–4): 365–372. doi:10.1007/s11270-011-0760-6

Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri

Yıl 2023, , 54 - 62, 27.06.2023
https://doi.org/10.58626/menba.1312262

Öz

Günümüzde kullanılan birçok materyal; ucuz maliyeti, işlenme kolaylığı, dayanıklılığı ve elverişliliği gibi nedenlerle gerek ana hammadde gerekse yan ürün olarak yaygın bir şekilde plastik içermektedir. Bu yaygın kullanım, kaçınılmaz olarak küresel ölçekte toplam plastik üretimini ve buna bağlı olarak atık plastik miktarını gün geçtikçe attırmaktadır. Atık plastikler en nihayetinde doğaya karışarak, birçoğu doğada çözünmediği veya çok geç çözündüğü için, uzun süre mevcudiyet gösterebilmektedir. Bu mevcudiyet, beraberinde önemli sorunlar getirmektedir. Bu sorunların en önemlilerinden birisi ve günümüzde en çok üzerine yoğunlaşılanı; plastiklerin canlı yaşamına olan etkisidir. Sorun teşkil eden en önemli plastik gruplarından biri ise boyutları nedeniyle canlı vücuduna alınması ihtimali yüksek olan mikroplastiklerdir. Mikroplastikler, genel olarak 5 mm’den küçük olan plastikler olarak tanımlanmaktadır. Mikroplastikler, sucul ekosistemlere doğrudan katılabildiği gibi, büyük boyutlardaki plastiklerin doğal süreçler sonucunda parçalanarak dağılmasıyla da ortaya çıkabilmektedir. Bunlar çeşitli yollarla canlıların vücutlarına girerek birtakım fizyolojik ve kimyasal süreçlerle etkileşime girebilmektedir. Nispeten yeni sayılabilecek bu konuda literatürde hatırı sayılır düzeyde bilgi birikimi bulunsa da ilgilendirdiği birçok hususta genel geçer kanılara varabilmek için katedilmesi gereken uzun bir yol vardır. Buradan hareketle bu derleme makalede okuyucuya mevcut literatür verileri ışığında bugüne dek katedilen yolda elde edilen bilgilerin aktarılması ve mikroplastiklerin çevresel etkisini azaltmaya yönelik çalışmalar için ilgili otoritelerin dikkatinin çekilmesi amaçlanmıştır. Bu amaçlara ulaşmak için mikroplastiklerin tarihçesi, sınıflandırılması, kaynakları, doğaya karışması, yayılımı, canlılar tarafından alınımı, canlılara olan etkileri ve çevresel riskleri tartışılmıştır.

Kaynakça

  • Alaee M., Arias P., Sjodin A., Bergman A. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29(6):683–689. doi:10.1016/S0160-4120(03)00121-1
  • Andrady A. L. (2011). Microplastics in the marine environment. Mar Pollut Bull 62(8): 1596–1605. doi:10.1016/j.marpolbul.2011.05.030
  • Arvidsson R. (2012). Contributions to emissions, exposure and risk assessment of nanomaterials. Doctoral Thesis, Chalmers University of Technology
  • Baner A. L., Piringer O. (2007). Preservation of quality through packaging. In: Plastic packaging materials for food. Wiley-VCH Verlag GmbH, Weinheim, pp 1–8. doi:10.1002/9783527613281.ch01 Bejgarn S., MacLeod M., Bogdal C., Breitholtz M. (2015). Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132: 114–119. doi:10.1016/j.chemosphere.2015.03.010
  • Bern L. (1990). Size-related discrimination of nutritive and inert particles by freshwater zooplankton. J Plankton Res 12(5):1059–1067. doi:10.1093/plankt/12.5.1059
  • Besseling E., Wegner A., Foekema E. M., van den Heuvel-Greve M. J., Koelmans A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the Lugworm Arenicola marina (L.) Environ Sci Technol 47(1):593–600. doi:10.1021/es302763x
  • Bilotta G. S., Brazier R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42(12):2849–2861. doi:10.1016/j.watres.2008.03.018
  • Boxall A. B., Chaudhry M. Q., Sinclair C. J., Jones A., Aitken R., Jefferson B., Watts C. (2007). Current and future predicted environmental exposure to engineered nanoparticles. Report by Central Science Laboratory for the Department of Environment Food and Rural Affairs
  • Bradley E. L., Driffield M., Harmer N., Oldring P. K. T., Castle L. (2008). Identification of potential migrants in epoxy phenolic can coatings. Int J Polym Anal Charact 13(3):200–223. doi:10.1080/10236660802070512 Bradley L. E., Driffield M., Guthrie J., Harmer N., Oldring T. P. K., Castle L. (2009). Analytical approaches to identify potential migrants in polyester-polyurethane can coatings. Food Addit Contam Part A 26(12):1602–1610. doi:10.1080/19440040903252256
  • Brandsch J., Piringer O. (2008). Characteristics of plastic materials. In: Plastic packaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 15–61. doi:10.1002/9783527621422.ch2
  • Brennholt N., Heß M., Reifferscheid G. (2017). Freshwater Microplastics: Challenges for Regulation and Management. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-5_12
  • Brodhagen M., Peyron M., Miles C., Inglis D. A. (2015). Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3): 1039–1056. doi:10.1007/s00253-014-6267-5
  • Browne M. A., Crump P., Niven S. J., Teuten E., Tonkin A., Galloway T., Thompson R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. doi:10.1021/es201811s
  • Desai M. P., Labhasetwar V., Walter E., Levy R. J., Amidon G. L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573
  • Dhawan A., Pandey A., Sharma V. (2011). Toxicity assessment of engineered nanomaterials: resolving the challenges. J Biomed Nanotechnol 7(1):6–7. doi:10.1166/jbn.2011.1173
  • Dris R., Gasperi J., Tassin B. (2017). Sources and fate of microplastics in urban areas: a focus on Paris Megacity. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-5_4
  • Eerkes-Medrano D., Thompson R. C., Aldridge D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. doi:10.1016/j.watres.2015.02.012
  • European Commission (2002). Methyloxirane (propylene oxide): summary risk assessment report. Institute for Health and Consumer Protection-European Chemicals Bureau
  • Farrell P., Nelson K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) Environ Pollut 177:1–3 GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection Reports and studies 90
  • Gigault J., Pedrono B., Maxit B., Ter Halle A. (2016). Marine plastic litter: the unanalyzed nanofraction. Environ Sci Nano 3(2):346–350. doi:10.1039/c6en00008h
  • Gottschalk F., Sonderer T., Scholz R. W., Nowack B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553
  • Green D. S., Boots B., Sigwart J., Jiang S., Rocha C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 208:426–434. doi:10.1016/j.envpol.2015.10.010
  • Handy R. D., Owen R., Valsami-Jones E. (2008). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325. doi:10.1007/s10646-008-0206-0
  • Harrad S., Abdallah M. A-E. , Rose N. L., Turner S. D., Davidson T. A. (2009). Current-use brominated flame betardants in water, sediment, and fish from English lakes. Environ Sci Technol 43(24):9077–9083. doi:10.1021/es902185u
  • Harrison J. P., Schratzberger M., Sapp M., Osborn A. M. (2014). Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14(232):014–0232. doi:10.1186/s12866-014-0232-4
  • Klein S., Worch E., Knepper T. P. (2015). Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany. Environ Sci Technol 49(10): 6070–6076. doi:10.1021/acs.est.5b00492
  • Klein S., Dimzon I. K., Eubeler J., Knepper T. P. (2017). Analysis, occurrence, and degradation of microplastics in the aqueous environment. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg. doi:10.1007/978-3-319-61615-5_3 Klemchuk P. P. (1990). Degradable plastics – a critical-review. Polym Degrad Stab 27(2): 183–202
  • Kyrikou I., Briassoulis D. (2007). Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150. doi:10.1007/s10924-007-0053-8
  • Lambert S., Sinclair C. J., Bradley E. L., Boxall A. B. A. (2013). Effects of environmental conditions on latex dergadation in aquatic systems. Sci Total Environ 447:225–234. doi:10.1016/j.scitotenv.2012.12.067
  • Lambert S, Sinclair C. J., Boxall A. B. A. (2014). Occurrence, degradation and effects of polymerbased materials in the environment. Rev Environ Contam Toxicol 227:1-53. doi:10.1007/978-3-319-01327-5_1
  • Lambert S. (2015). Biopolymers and their application as biodegradable plastics. In: Kalia CV (ed) Microbial factories: biodiversity, biopolymers, bioactive molecules, vol 2. Springer India, New Delhi, pp 1–9. doi:10.1007/978-81-322-2595-9_1
  • Lambert S., Wagner M. (2016a). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268. doi:10.1016/j.chemosphere.2015.11.078
  • Lambert S., Wagner M. (2016b). Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517. doi:10.1016/j.chemosphere.2016.07.042
  • Lambert, S., & Wagner, M. (2018). Microplastics are contaminants of emerging concern in freshwater environments: an overview. Springer International Publishing.
  • Lithner D., Damberg J., Dave G., Larsson A. (2009). Leachates from plastic consumer products – screening for toxicity with Daphnia magna. Chemosphere 74(9):1195–1200. doi:10.1016/j.chemosphere.2008.11.022
  • Lithner D., Nordensvan I., Dave G. (2012). Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ Sci Pollut Res 19(5):1763–1772. doi:10.1007/s11356-011-0663-5
  • Liu E. K., He W. Q., Yan C. R. (2014). ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environ Res Lett 9(9):091001. doi:10.1088/1748-9326/9/9/091001 Mattsson K., Hansson L. A., Cedervall T. (2015). Nano-plastics in the aquatic environment. Environ Sci Process Impacts 17:1712–1721. doi:10.1039/c5em00227c
  • Muncke J. (2009) Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ 407(16):4549–4559. doi:10.1016/j.scitotenv.2009.05.006
  • Musee N. (2011) .Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30(9):1181–1195. doi:10.1177/0960327110391387
  • Nguyen Phuc T., Matsui Y., Fujiwara T. (2011). Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam. Environ Monit Assess 175(1–4):23–35. doi:10.1007/s10661-010-1490-8
  • Nizzetto L., Langaas S., Futter M. (2016). Pollution: Do microplastics spill on to farm soils? Nature 537(7621):488–488. doi:10.1038/537488b
  • Njeru J. (2006). The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum 37(6):1046–1058
  • Nowack B., Bucheli T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22. doi:10.1016/j.envpol.2007.06.006
  • Oberdörster E., Zhu S., Blickley T. M., McClellan-Green P., Haasch M. L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44(6):1112–1120. doi:10.1016/j.carbon.2005.11.008
  • Ogonowski M., Schur C., Jarsen A., Gorokhova E. (2016). The effects of natural and anthropogenic microparticles on individual Fitness in Daphnia magna. PLoS One 11(5):e0155063 Phuong N. N., Zalouk-Vergnoux A., Poirier L., Kamari A., Ch^atel A., Mouneyrac C., Lagarde F. (2016). Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environ Pollut 211:111–123. doi:10.1016/j.envpol.2015.12.035
  • Rillig M. C. (2012). Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46 (12):6453–6454. doi:10.1021/es302011r
  • Scherer C., Weber A., Lambert S., Wagner M. (2017). Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer Nature, Heidelberg. doi:10.1007/978-3-319-61615-5_8
  • Seco Pon J. P., Becherucci M. E. (2012). Spatial and temporal variations of urban litter in Mar del Plata, the major coastal city of Argentina. Waste Manag 32(2):343–348. doi:10.1016/j.wasman.2011.10.012
  • Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental pollution, 185, 77-83. doi: 10.1016/j.envpol.2013.10.013
  • Stevenson K., Stallwood B., Hart A. G. (2008.) Tire rubber recycling and bioremediation: a review. Biorem J 12(1):1–11. doi:10.1080/10889860701866263
  • Syberg K., Khan F. R., Selck H., Palmqvist A., Banta G. T., Daley J., Sano L., Duhaime M. B. (2015). Microplastics: addressing ecological risk through lessons learned. Environ Toxicol Chem 34(5):945–953. doi:10.1002/etc.2914 Vlachopoulos J., Strutt D. (2003). Polymer processing. Mater Sci Technol 19(9):1161–1169. doi:10.1179/026708303225004738
  • Wagner M., Scherer C., Alvarez-Mu~noz D., Brennholt N., Bourrain X., Buchinger S., Fries E., Grosbois C., Klasmeier J., Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak A, Winther-Nielsen M, Reifferscheid G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26(1):1–9. doi:10.1186/s12302-014-0012-7
  • Xu G, Wang QH, Gu QB, Cao YZ, Du XM, Li FS (2006a). Contamination characteristics and degradation behavior of low-density polyethylene film residues in typical farmland soils of China. J Environ Sci Health Part B 41(2):189–199. doi:10.1080/03601230500365069
  • Xu J, Wang P, Guo WF, Dong JX, Wang L, Dai SG (2006b). Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere 65(9):1445–1451. doi:10.1016/j.chemosphere.2006.04.042
  • Zbyszewski M, Corcoran PL (2011). Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220(1–4): 365–372. doi:10.1007/s11270-011-0760-6
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekoloji (Diğer)
Bölüm Derleme
Yazarlar

Cansu Bozma 0009-0001-1156-8086

Nurcan Şimşek 0009-0007-3871-6775

Yigit Tastan 0000-0002-6782-1597

Adem Yavuz Sönmez 0000-0002-7043-1987

Yayımlanma Tarihi 27 Haziran 2023
Kabul Tarihi 24 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bozma, C., Şimşek, N., Tastan, Y., Sönmez, A. Y. (2023). Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 9(1), 54-62. https://doi.org/10.58626/menba.1312262
AMA Bozma C, Şimşek N, Tastan Y, Sönmez AY. Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. Haziran 2023;9(1):54-62. doi:10.58626/menba.1312262
Chicago Bozma, Cansu, Nurcan Şimşek, Yigit Tastan, ve Adem Yavuz Sönmez. “Mikroplastik Kirliliği Ve Tatlısu Ekosistemlerindeki Etkileri”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 9, sy. 1 (Haziran 2023): 54-62. https://doi.org/10.58626/menba.1312262.
EndNote Bozma C, Şimşek N, Tastan Y, Sönmez AY (01 Haziran 2023) Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 9 1 54–62.
IEEE C. Bozma, N. Şimşek, Y. Tastan, ve A. Y. Sönmez, “Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, c. 9, sy. 1, ss. 54–62, 2023, doi: 10.58626/menba.1312262.
ISNAD Bozma, Cansu vd. “Mikroplastik Kirliliği Ve Tatlısu Ekosistemlerindeki Etkileri”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 9/1 (Haziran 2023), 54-62. https://doi.org/10.58626/menba.1312262.
JAMA Bozma C, Şimşek N, Tastan Y, Sönmez AY. Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2023;9:54–62.
MLA Bozma, Cansu vd. “Mikroplastik Kirliliği Ve Tatlısu Ekosistemlerindeki Etkileri”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, c. 9, sy. 1, 2023, ss. 54-62, doi:10.58626/menba.1312262.
Vancouver Bozma C, Şimşek N, Tastan Y, Sönmez AY. Mikroplastik Kirliliği ve Tatlısu Ekosistemlerindeki Etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2023;9(1):54-62.