Araştırma Makalesi
BibTex RIS Kaynak Göster

Domates Yetiştiriciliğinde Tuz Stresinin Olumsuz Etkilerine Karşı Kitosan Uygulaması

Yıl 2023, , 31 - 39, 01.07.2023
https://doi.org/10.53518/mjavl.1288502

Öz

Küresel düzeyde meydana gelen iklim değişiklikleri, savaşlar, nüfus artışı, tarım arazilerindeki azalma gibi nedenlere toprak tuzluluğu da eklenince üretim verimliliği giderek önem kazanmıştır. Tuzluluk bitki gelişmesini önemli derecede etkilemektedir. Bundan dolayı bu konuda çalışmalar yoğunlaşmıştır. Bitki gelişimini tuz stresinden korumak için organik çözümlere odaklanılmıştır. Bu çalışmada domates fidelerinde tuz stresini hafifletmek için kitosan biyopolimeri uygulanmıştır. Tuz stresine karşı bitki savunma refleksleri Süperoksit Dismutaz (SOD), Katalaz (CAT) ve Malondialdehit (MDA) enzim seviyelerindeki değişim ile incelenmiştir. Tuz stresi için uygulanan kitosanın anlamlı derecede SOD, CAT ve MDA enzim seviyelerini etkilediği tespit edilmiştir. Kitosanın abiyotik streslerden korunmak için kullanışlı ve makul bir araç olduğu ifade edilebilir. Ayrıca enzim değerlerinin bitkilerde strese neden olan etkenlerin tespitinde ve bitkisel yanıt mekanizmalarının aydınlatılmasında kullanışlı olduğu belirlenmiştir.

Destekleyen Kurum

Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAP)

Proje Numarası

FBA-2021-765

Teşekkür

Bu çalışma Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAP) tarafından desteklenen FBA-2021-765 kodlu projeden elde edilmiştir. Yazarlar Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür ederler.

Kaynakça

  • Aebi, H. (1984). B. Isolation, purification, characterization, and assay of antioxygenic enzymes, Catalase in vitro. Methods in Enzymology, 105, 121-126
  • Ahmad, P., Alyemeni, M. N., Abass Ahanger, M., Wijaya, L., Alam, P., Kumar, A. ve Ashraf, M. (2018). Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. J. Plant Interact., 13 (x), pp. 151-162, Doi: 10.1080/17429145.2018.1441452
  • Alcázar, R., Bueno, M. ve Tiburcio, A. F. (2020). Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells, 9, p. 2373, doi: 10.3390/CELLS9112373
  • Amri, S. M. (2013). Improved growth, productivity and quality of tomato plants through application of skimmic acid. Saudi Journal of Biological Sciences, 20, pp. 339-345
  • Asim, A., Gökçe, Z. N. Ö., Bakhsh, A., Çayli, İ. T., Aksoy, E., Çalişkan, S., Çalişkan, M. E. ve Demirel, U. (2021). Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p. Turk J. Agric., 45, 651-668, doi: 10.3906/tar-2103-60
  • Beauchamp, C. ve Fridovich, I. (1971) Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Analytical Biochemistry, 44, 276-287. http://dx.doi.org/10.1016/0003-2697(71)90370-8
  • Buetter, C. L., Specht, C. A. ve Levitz, S. M. (2013). Innate sensing of chitin and chitosan. PLOS Pathogens, 9, Article e1003080
  • Bulut, H. (2020). Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi . Journal of the Institute of Science and Technology, 10 (4) , 2932-2942 . DOI: 10.21597/jist.686577
  • Chaudhry, U. K., Gökçe, Z. N. ve Gökçe, A. F. (2020). Effects of salinity and drought stresses on the physio- morphological attributes of onion cultivars at bulbification stage. Int. J. Agric. Biol., 24 , 1681-1689, doi:10.17957/IJAB/15.1611
  • Chen, D., Shao, Q., Yin, L., Younis ve A., Zheng, B. (2019). Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci., 9, 1945, doi:10.3389/fpls.2018.01945
  • Colman, S. L., Salcedo, M. F., Mansilla, A. Y., Iglesias, M. J., Fiol, D. F., Saldana, S. M., …, ve Casalongue, C. A. (2019). Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Plant Physiology and Biochemistry, 143, pp. 203-211
  • Demirel, U., Morris, W. L., Ducreux, L. J., Yavuz, C., Asim, A., Tindas, I., Campbell, R., Morris, J. A., Verrall, S. R., Hedley, P. E. ve Gokce, Z. N. (2020). Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front. Plant Sci., 11 (), p. 169
  • Du, Z. ve Bramlage. W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem., 40, pp. 1566-1570
  • Escudero, N., Lopaz-Moya, F., Ghahrimani, Z., Zavala, E. A., Cordovilla, A., Ibanez, C. R., … ve Luis, V. (2017). Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Frontiers in Plant Science, 8, p. 1415
  • FAO, The Future of Food and Agriculture, Food Agric. Organ. United Nations., 2017, 1–52. 〈http://www.fao.org/3/I8429EN/i8429en.pdf〉 (accessed January 03, 2023).
  • Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S.S. ve Siddique, K. H. M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem., 118, pp. 199-217, 10.1016/J.PLAPHY.2017.06.020
  • Hidangmayum, A., Dwivedi, P., Katiyar, D. ve Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants, 25(2), 313-326.
  • Hussain, M. I., Elnaggar, A., El-Keblawy, A. (2021). Eco-physiological adaptations of Salsola drummondii to soil salinity: role of reactive oxygen species, ion homeostasis, carbon isotope signatures and anti-oxidant feedback. Plant Biosyst., 155 (x), pp. 1133-1145
  • Hipolito, H. H., Morales, S. G., Mendoza, A. B., Ortis, H. O., Pliego, G. C., Maldonado, A. J. (2018). Effects of chitosan- PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules (Basel, Switzerland), 23, p. 178
  • Kang, L. Y., Lu, Q. S., Shao, H. B. ve Shi, P. (2017). Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region, Jiangsu J. Agric. Sci., 33, pp. 83-93
  • Kashyap, R. L., Xiang, X. ve Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, pp. 36-51
  • Kheiri, A., Moosawijorf, S. A., Malipour, A., Saremi, H. ve Nikkhah, M. (2016). Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and green house. International Journal for Biological Macromolecules, 93, pp. 1261-1272
  • Leisner, C. P. (2020). Review: climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci., 293, doi:10.1016/j.plantsci.2020.110412
  • Li, Y., Wang, H., Zhang, Y. ve Martin, C. (2018). Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?. Plant Cell Reports, 37, pp. 1443-1450
  • Li, X. X., Huang, P., Zhuang, H. D., Du, Y. P. (2016). Research advances of stress tolerance in sweet sorghum, Jiangsu J. Agric. Sci., 32, pp. 1429-1433
  • Liang, W., Ma, X., Wan, P. ve Liu, L. (2018).Plant salt-tolerance mechanism: a review. Biochem. Biophys. Res. Commun., 495, pp. 286-291, doi:10.1016/J.BBRC.2017.11.043
  • Liu, Y., Wisniewski, M., Kennedy, J. F., Jiang, Y., Tang, J. ve Liu, J. (2016). Chitosan and oilgochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydrate Polymers, 151, pp. 474-479
  • Malafaia, C. B., Silva, T. D., Jordao, D. O., Almeida, C. M., Silva, M. L., Corretia, M. T. ve Silva, M. V. (2013). Evaluation of the resistance and differential induction of chitinase in tomato in response to inoculation with Fusarium oxysporum f. sp. Lycopersici. Journal of Plant Physiology and Pathology, 1 , p. 3
  • Manonga, T. ve Kumar, A. (2017). Effect of growth promoting and resistance inducing chemicals on yield attributing characteristics of Tomato. Journal of Pure and Applied Microbiology, 11, pp. 1479-1485
  • Mittler, R., Zandalinas, S. I., Fichman, Y. ve Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol., 23, pp. 663-679
  • Mukta, J. A., Rahman, M., Sabir, A. A., Gupta, D. R., Sunvy, M. Z., … ve Tofazzal Islam, M. (2017). Chitosan as plant probiotics application enhance growth and yield of strawberry. Biocatalysis and Agricultural Biotechnology, 11, pp. 9-18
  • Muley, A. B., Shingote, P. R., Patil, A. P., Dalvi, S. G. ve Suprasanna, P. (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate polymers, 210, 289-301.
  • Murshed, R., Lopez-Lauri, F. ve Sallanon, H. (2014). Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol Mol Biol Plants. Jan; 20(1): 15–29.
  • Pichyangkura, R. ve Chandchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulture, 196, pp. 49-65
  • Rendina, N., Nuzzaci, M., Sofo, A., Campiglia, P., Scopa, A., Sommella, E., … ve Manfra, M. (2019). Yield parameters and antioxidant compounds of tomato fruit : the role of plant defence inducers with or without cucumber mosaic virus infection. Journal of the Science of Food and Agriculture, 99, pp. 5541-5549
  • Romanazi, G., Feliziani, E. ve Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film forming properties. Frontiers of Microbiology, 9, p. 2745
  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A. (2015). Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of Tomato. International Journal for Biological Maromolecule, 75, pp. 346-353
  • Santos, V. P., Marques, N. S. S., Maia, P. S. V., Lima, M. A. B., Franco, L. O. ve Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 21, p. 4290
  • Semida, W. M., El-Mageed, A., Taia, A., Abdelkhalik, A., Hemida, K. A., Abdurrahman, H. A., Howladar, S. M., Leilah, A. A. ve Rady, M. O. (2021). Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy, 11, p. 855
  • Shams, P. L. (2018). Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Plant Physiology, 9(1), 2661-2670.
  • Siegel, K. R., Ali, M. K., Srinivasiah, A., Nugent, R. A. ve Narayan, K. M V. (2014). Do we produce enough fruits and vegetables to meet global health need?. Plos One, 9, Article e104059
  • Tandra, S. Z., Hassan, L., Hannan, A., Jahan, J. ve Sagor, G. H. M. (2022). Screening and biochemical responses of tomato (Lycopersicum esculentum L.) genotypes for salt tolerance. Acta Physiol. Plant., 44, pp. 1-13
  • Wang, M., Chen, Y., Zhang, R., Wang, W., Zhao, X., Du, Y.ve Yin, H. (2015). Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars in northwest China. Field Crops Research, 172, pp. 11-20
  • Zehra, A., Meena, M., Dubey, M. K., Aamir, M. ve Upadhyay, R. S. (2017). Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Botanical Studies, 58, p. 44
  • Zhou, J., Wu, J. C., Du, B. M., Li, P. L. (2016). A comparative study on drought resistances of four species of lianas, Jiangsu J. Agric. SCI, 32, pp. 674-679

Chitosan Application Against the Negative Effects of Salt Stress in Tomato Cultivation

Yıl 2023, , 31 - 39, 01.07.2023
https://doi.org/10.53518/mjavl.1288502

Öz

Production efficiency has become increasingly important when soil salinity is added to causes such as climate changes, wars, population growth, and a decrease in agricultural lands. Salinity significantly affects plant growth. Therefore, studies on this subject have intensified. Organic solutions are focused on protecting plant growth from salt stress. In this study, chitosan biopolymer was applied to alleviate salt stress in tomato seedlings. Plant defense reflexes against salt stress were investigated by changes in the enzyme levels of Superoxide Dismutase (SOD), Catalase (CAT), and Malondialdehyde (MDA). It was determined that chitosan applied for salt stress significantly affected SOD, CAT, and MDA enzyme levels. It can be stated that chitosan is a valuable and reasonable tool for protection from abiotic stresses. In addition, it has been determined that enzyme values are helpful in determining the factors that cause stress in plants and in elucidating the vegetative response mechanisms.

Proje Numarası

FBA-2021-765

Kaynakça

  • Aebi, H. (1984). B. Isolation, purification, characterization, and assay of antioxygenic enzymes, Catalase in vitro. Methods in Enzymology, 105, 121-126
  • Ahmad, P., Alyemeni, M. N., Abass Ahanger, M., Wijaya, L., Alam, P., Kumar, A. ve Ashraf, M. (2018). Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. J. Plant Interact., 13 (x), pp. 151-162, Doi: 10.1080/17429145.2018.1441452
  • Alcázar, R., Bueno, M. ve Tiburcio, A. F. (2020). Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells, 9, p. 2373, doi: 10.3390/CELLS9112373
  • Amri, S. M. (2013). Improved growth, productivity and quality of tomato plants through application of skimmic acid. Saudi Journal of Biological Sciences, 20, pp. 339-345
  • Asim, A., Gökçe, Z. N. Ö., Bakhsh, A., Çayli, İ. T., Aksoy, E., Çalişkan, S., Çalişkan, M. E. ve Demirel, U. (2021). Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p. Turk J. Agric., 45, 651-668, doi: 10.3906/tar-2103-60
  • Beauchamp, C. ve Fridovich, I. (1971) Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Analytical Biochemistry, 44, 276-287. http://dx.doi.org/10.1016/0003-2697(71)90370-8
  • Buetter, C. L., Specht, C. A. ve Levitz, S. M. (2013). Innate sensing of chitin and chitosan. PLOS Pathogens, 9, Article e1003080
  • Bulut, H. (2020). Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi . Journal of the Institute of Science and Technology, 10 (4) , 2932-2942 . DOI: 10.21597/jist.686577
  • Chaudhry, U. K., Gökçe, Z. N. ve Gökçe, A. F. (2020). Effects of salinity and drought stresses on the physio- morphological attributes of onion cultivars at bulbification stage. Int. J. Agric. Biol., 24 , 1681-1689, doi:10.17957/IJAB/15.1611
  • Chen, D., Shao, Q., Yin, L., Younis ve A., Zheng, B. (2019). Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci., 9, 1945, doi:10.3389/fpls.2018.01945
  • Colman, S. L., Salcedo, M. F., Mansilla, A. Y., Iglesias, M. J., Fiol, D. F., Saldana, S. M., …, ve Casalongue, C. A. (2019). Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Plant Physiology and Biochemistry, 143, pp. 203-211
  • Demirel, U., Morris, W. L., Ducreux, L. J., Yavuz, C., Asim, A., Tindas, I., Campbell, R., Morris, J. A., Verrall, S. R., Hedley, P. E. ve Gokce, Z. N. (2020). Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front. Plant Sci., 11 (), p. 169
  • Du, Z. ve Bramlage. W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem., 40, pp. 1566-1570
  • Escudero, N., Lopaz-Moya, F., Ghahrimani, Z., Zavala, E. A., Cordovilla, A., Ibanez, C. R., … ve Luis, V. (2017). Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Frontiers in Plant Science, 8, p. 1415
  • FAO, The Future of Food and Agriculture, Food Agric. Organ. United Nations., 2017, 1–52. 〈http://www.fao.org/3/I8429EN/i8429en.pdf〉 (accessed January 03, 2023).
  • Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S.S. ve Siddique, K. H. M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem., 118, pp. 199-217, 10.1016/J.PLAPHY.2017.06.020
  • Hidangmayum, A., Dwivedi, P., Katiyar, D. ve Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants, 25(2), 313-326.
  • Hussain, M. I., Elnaggar, A., El-Keblawy, A. (2021). Eco-physiological adaptations of Salsola drummondii to soil salinity: role of reactive oxygen species, ion homeostasis, carbon isotope signatures and anti-oxidant feedback. Plant Biosyst., 155 (x), pp. 1133-1145
  • Hipolito, H. H., Morales, S. G., Mendoza, A. B., Ortis, H. O., Pliego, G. C., Maldonado, A. J. (2018). Effects of chitosan- PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules (Basel, Switzerland), 23, p. 178
  • Kang, L. Y., Lu, Q. S., Shao, H. B. ve Shi, P. (2017). Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region, Jiangsu J. Agric. Sci., 33, pp. 83-93
  • Kashyap, R. L., Xiang, X. ve Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, pp. 36-51
  • Kheiri, A., Moosawijorf, S. A., Malipour, A., Saremi, H. ve Nikkhah, M. (2016). Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and green house. International Journal for Biological Macromolecules, 93, pp. 1261-1272
  • Leisner, C. P. (2020). Review: climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci., 293, doi:10.1016/j.plantsci.2020.110412
  • Li, Y., Wang, H., Zhang, Y. ve Martin, C. (2018). Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?. Plant Cell Reports, 37, pp. 1443-1450
  • Li, X. X., Huang, P., Zhuang, H. D., Du, Y. P. (2016). Research advances of stress tolerance in sweet sorghum, Jiangsu J. Agric. Sci., 32, pp. 1429-1433
  • Liang, W., Ma, X., Wan, P. ve Liu, L. (2018).Plant salt-tolerance mechanism: a review. Biochem. Biophys. Res. Commun., 495, pp. 286-291, doi:10.1016/J.BBRC.2017.11.043
  • Liu, Y., Wisniewski, M., Kennedy, J. F., Jiang, Y., Tang, J. ve Liu, J. (2016). Chitosan and oilgochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydrate Polymers, 151, pp. 474-479
  • Malafaia, C. B., Silva, T. D., Jordao, D. O., Almeida, C. M., Silva, M. L., Corretia, M. T. ve Silva, M. V. (2013). Evaluation of the resistance and differential induction of chitinase in tomato in response to inoculation with Fusarium oxysporum f. sp. Lycopersici. Journal of Plant Physiology and Pathology, 1 , p. 3
  • Manonga, T. ve Kumar, A. (2017). Effect of growth promoting and resistance inducing chemicals on yield attributing characteristics of Tomato. Journal of Pure and Applied Microbiology, 11, pp. 1479-1485
  • Mittler, R., Zandalinas, S. I., Fichman, Y. ve Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol., 23, pp. 663-679
  • Mukta, J. A., Rahman, M., Sabir, A. A., Gupta, D. R., Sunvy, M. Z., … ve Tofazzal Islam, M. (2017). Chitosan as plant probiotics application enhance growth and yield of strawberry. Biocatalysis and Agricultural Biotechnology, 11, pp. 9-18
  • Muley, A. B., Shingote, P. R., Patil, A. P., Dalvi, S. G. ve Suprasanna, P. (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate polymers, 210, 289-301.
  • Murshed, R., Lopez-Lauri, F. ve Sallanon, H. (2014). Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol Mol Biol Plants. Jan; 20(1): 15–29.
  • Pichyangkura, R. ve Chandchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulture, 196, pp. 49-65
  • Rendina, N., Nuzzaci, M., Sofo, A., Campiglia, P., Scopa, A., Sommella, E., … ve Manfra, M. (2019). Yield parameters and antioxidant compounds of tomato fruit : the role of plant defence inducers with or without cucumber mosaic virus infection. Journal of the Science of Food and Agriculture, 99, pp. 5541-5549
  • Romanazi, G., Feliziani, E. ve Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film forming properties. Frontiers of Microbiology, 9, p. 2745
  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A. (2015). Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of Tomato. International Journal for Biological Maromolecule, 75, pp. 346-353
  • Santos, V. P., Marques, N. S. S., Maia, P. S. V., Lima, M. A. B., Franco, L. O. ve Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 21, p. 4290
  • Semida, W. M., El-Mageed, A., Taia, A., Abdelkhalik, A., Hemida, K. A., Abdurrahman, H. A., Howladar, S. M., Leilah, A. A. ve Rady, M. O. (2021). Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy, 11, p. 855
  • Shams, P. L. (2018). Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Plant Physiology, 9(1), 2661-2670.
  • Siegel, K. R., Ali, M. K., Srinivasiah, A., Nugent, R. A. ve Narayan, K. M V. (2014). Do we produce enough fruits and vegetables to meet global health need?. Plos One, 9, Article e104059
  • Tandra, S. Z., Hassan, L., Hannan, A., Jahan, J. ve Sagor, G. H. M. (2022). Screening and biochemical responses of tomato (Lycopersicum esculentum L.) genotypes for salt tolerance. Acta Physiol. Plant., 44, pp. 1-13
  • Wang, M., Chen, Y., Zhang, R., Wang, W., Zhao, X., Du, Y.ve Yin, H. (2015). Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars in northwest China. Field Crops Research, 172, pp. 11-20
  • Zehra, A., Meena, M., Dubey, M. K., Aamir, M. ve Upadhyay, R. S. (2017). Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Botanical Studies, 58, p. 44
  • Zhou, J., Wu, J. C., Du, B. M., Li, P. L. (2016). A comparative study on drought resistances of four species of lianas, Jiangsu J. Agric. SCI, 32, pp. 674-679
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Bulut 0000-0003-3424-7012

Halil İbrahim Öztürk 0000-0002-8977-0831

Proje Numarası FBA-2021-765
Erken Görünüm Tarihi 24 Haziran 2023
Yayımlanma Tarihi 1 Temmuz 2023
Gönderilme Tarihi 27 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bulut, H., & Öztürk, H. İ. (2023). Domates Yetiştiriciliğinde Tuz Stresinin Olumsuz Etkilerine Karşı Kitosan Uygulaması. Manas Journal of Agriculture Veterinary and Life Sciences, 13(1), 31-39. https://doi.org/10.53518/mjavl.1288502