Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2026, Cilt: 15 Sayı: 1, 146 - 166, 16.01.2026
https://doi.org/10.33206/mjss.1481386

Öz

Kaynakça

  • Ak, M. A. (2023). Comparative analysis of Turkey and Russia's public diplomacy on the Balkans (Example of the Russian World Foundation and Yunus Emre Institute). Marmara Üniversitesi Siyasal Bilimler Dergisi, 11(1), 1-22. https://doi.org/10.14782/marmarasbd.1159265
  • Akçapar, S. K., & Şimşek, D. (2016). Türkiye'de uluslararası göçün sosyo-ekonomik etkileri. Ankara Üniversitesi SBF Dergisi, 71(4), 1019-1042.
  • Barca, F., McCann, P., & Rodríguez-Pose, A. (2012). The case for regional development intervention: Place- based versus place-neutral approaches. Journal of Regional Science, 52(1), 134–152.
  • Behrens, J. T. (1997). Exploratory data analysis. In (Editör Adı, Ed.), Research methods in psychology (pp. 221- 236). Springer.
  • Bloom, D. E., & Canning, D. (2003). Contraception and the Celtic Tiger. The Economic and Social Review, 34(3), 229–247.
  • Da Poian, V., Theiling, B., Clough, L., McKinney, B., Major, J., Chen, J., & Hörst, S. (2023). Exploratory data analysis (EDA) machine learning approaches for ocean world analog mass spectrometry. Frontiers in Astronomy and Space Sciences, 10, 1134141. https://doi.org/10.3389/fspas.2023.1134141
  • Docquier, F., Machado, J., & Sekkat, K. (2015). Efficiency gains from liberalizing labor mobility. Scandinavian Journal of Economics, 117(2), 303-346. https://doi.org/10.1111/sjoe.12097
  • Eken, S. (2020). Büyük verinin interaktif görselleştirilmesi: Tableau üzerine öğrenci deneyimleri. Avrupa Bilim Ve Teknoloji Dergisi, (18), 262-271. https://doi.org/10.31590/ejosat.659823
  • Emekdaş, E. F. (2010). İmge arama sonuçlarının baskın kümeler kullanılarak gruplandırılması [Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü].
  • Fielding, T., & Ishikawa, Y. (2021). COVID-19 and migration: A research note on the effects of COVID-19 on internal migration rates and patterns in Japan. Population, Space and Place, 27(6), e2499. https://doi.org/10.1002/psp.2499
  • Filiztekin, A. (2020). Regional economic disparities and convergence in Turkey: A spatial approach. Growth and Change, 51(3), 1338–1359.
  • Göçmen, İ., & Ekmekçi, P. E. (2015). Türkiye'de iç göç ve ekonomik etkileri. Ege Akademik Bakış Dergisi, 15(2), 231-243.
  • Gündem, F. (2023). Beliefs, economics, and spatial regimes in voting behavior: The Turkish case, 2007–2018. Humanities and Social Sciences Communications, 10(1), 1-15.
  • İçduygu, A., & Nimer, M. (2020). The politics of an emerging “immigration country”: Turkey and its migrants. International Migration, 58(4), 270–289.
  • İslamoğlu, A. H., & Alnıaçık, Ü. (2014). Sosyal bilimlerde araştırma yöntemleri (511). Beta Yayınevi.
  • Jolliffe, I. T. (2002). Principal component analysis. Springer-Verlag.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202.
  • Jussibaliyeva, A., Iskakova, D., Kurmanalina, A., Khassenova, K., & Amerkhanova, I. (2023). Internal mıgration and its impact on population income in different sectors of economy. Science and Innovation, 2(A3), 125- 137.
  • Karataş, A. (2023). Global migration governance: An analysis of Turkey on the basis of migration governance indicators. İ. Dursunoğlu (Ed.), International Research in Social, Human and Administrative Sciences X, (ss. 47–90). Eğitim Yayınevi.
  • Kaya, Y., & Çolak, M. (2020). Türkiye'de boşanma oranları ve sosyo-ekonomik faktörler. Türk Sosyal Bilimler Dergisi, 25(3), 456-472.
  • Kemsley, E. K. (1996). Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemometrics and Intelligent Laboratory Systems, 33(1), 47-61.
  • Kirk, D. (1996). Demographic transition theory. Population Studies, 50(3), 361–387.
  • Lee, R., & Mason, A. (2014). Is low fertility really a problem? Science, 346(6206), 229–234.
  • Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461.
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. https://doi.org/10.1002/9781119482260
  • Lutz, W., Butz, W. P., & KC, S. (Eds.). (2014). World population and human capital in the twenty-first century. Oxford University Press.
  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press.
  • Marques, A. M., Domingos, T., & Costa, P. (2020). Socio-economic typologies of EU regions using PCA and clustering. Regional Science Policy & Practice, 12(6), 1073–1093.
  • Notestein, F. W. (1945). Population—the long view. In (Editör Adı, Ed.), Food for the world (pp. 36–57).
  • OECD. (2020). Rural well-being: Geography of opportunities. OECD Publishing.
  • Öncel, H., & Levend, S. (2023). The effects of urban growth on natural areas: The three metropolitan areas in Türkiye. Environmental Monitoring and Assessment, 195(7), 816. https://doi.org/10.1007/s10661-023-11539-7
  • Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242.
  • Pereira, M. F., Vale, D. S., & Santana, P. (2023). Is walkability equitably distributed across socio-economic groups?–A spatial analysis for Lisbon metropolitan area. Journal of Transport Geography, 106, 103491.
  • Reher, D. (1998). Family ties in Western Europe: Persistent contrasts. Population and Development Review, 24(2), 203–234.
  • Rodríguez-Pose, A. (2018). The revenge of the places that don’t matter. Cambridge Journal of Regions, Economy and Society, 11(1), 189–209.
  • Saccenti, E. (2024). A gentle introduction to principal component analysis using tea-pots, dinosaurs, and pizza. Teaching Statistics, 46(1), 38-52. https://doi.org/10.1111/test.12363
  • Thornes, B., & Collard, J. (2023). Who divorces? Taylor & Francis.
  • Todaro, M. P. (1969). A model of labor migration and urban unemployment in less developed countries. American Economic Review, 59(1), 138-148.
  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • UN DESA. (2022). World social report.
  • UNDP. (2021). Regional human development report.

Yıl 2026, Cilt: 15 Sayı: 1, 146 - 166, 16.01.2026
https://doi.org/10.33206/mjss.1481386

Öz

Kaynakça

  • Ak, M. A. (2023). Comparative analysis of Turkey and Russia's public diplomacy on the Balkans (Example of the Russian World Foundation and Yunus Emre Institute). Marmara Üniversitesi Siyasal Bilimler Dergisi, 11(1), 1-22. https://doi.org/10.14782/marmarasbd.1159265
  • Akçapar, S. K., & Şimşek, D. (2016). Türkiye'de uluslararası göçün sosyo-ekonomik etkileri. Ankara Üniversitesi SBF Dergisi, 71(4), 1019-1042.
  • Barca, F., McCann, P., & Rodríguez-Pose, A. (2012). The case for regional development intervention: Place- based versus place-neutral approaches. Journal of Regional Science, 52(1), 134–152.
  • Behrens, J. T. (1997). Exploratory data analysis. In (Editör Adı, Ed.), Research methods in psychology (pp. 221- 236). Springer.
  • Bloom, D. E., & Canning, D. (2003). Contraception and the Celtic Tiger. The Economic and Social Review, 34(3), 229–247.
  • Da Poian, V., Theiling, B., Clough, L., McKinney, B., Major, J., Chen, J., & Hörst, S. (2023). Exploratory data analysis (EDA) machine learning approaches for ocean world analog mass spectrometry. Frontiers in Astronomy and Space Sciences, 10, 1134141. https://doi.org/10.3389/fspas.2023.1134141
  • Docquier, F., Machado, J., & Sekkat, K. (2015). Efficiency gains from liberalizing labor mobility. Scandinavian Journal of Economics, 117(2), 303-346. https://doi.org/10.1111/sjoe.12097
  • Eken, S. (2020). Büyük verinin interaktif görselleştirilmesi: Tableau üzerine öğrenci deneyimleri. Avrupa Bilim Ve Teknoloji Dergisi, (18), 262-271. https://doi.org/10.31590/ejosat.659823
  • Emekdaş, E. F. (2010). İmge arama sonuçlarının baskın kümeler kullanılarak gruplandırılması [Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü].
  • Fielding, T., & Ishikawa, Y. (2021). COVID-19 and migration: A research note on the effects of COVID-19 on internal migration rates and patterns in Japan. Population, Space and Place, 27(6), e2499. https://doi.org/10.1002/psp.2499
  • Filiztekin, A. (2020). Regional economic disparities and convergence in Turkey: A spatial approach. Growth and Change, 51(3), 1338–1359.
  • Göçmen, İ., & Ekmekçi, P. E. (2015). Türkiye'de iç göç ve ekonomik etkileri. Ege Akademik Bakış Dergisi, 15(2), 231-243.
  • Gündem, F. (2023). Beliefs, economics, and spatial regimes in voting behavior: The Turkish case, 2007–2018. Humanities and Social Sciences Communications, 10(1), 1-15.
  • İçduygu, A., & Nimer, M. (2020). The politics of an emerging “immigration country”: Turkey and its migrants. International Migration, 58(4), 270–289.
  • İslamoğlu, A. H., & Alnıaçık, Ü. (2014). Sosyal bilimlerde araştırma yöntemleri (511). Beta Yayınevi.
  • Jolliffe, I. T. (2002). Principal component analysis. Springer-Verlag.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202.
  • Jussibaliyeva, A., Iskakova, D., Kurmanalina, A., Khassenova, K., & Amerkhanova, I. (2023). Internal mıgration and its impact on population income in different sectors of economy. Science and Innovation, 2(A3), 125- 137.
  • Karataş, A. (2023). Global migration governance: An analysis of Turkey on the basis of migration governance indicators. İ. Dursunoğlu (Ed.), International Research in Social, Human and Administrative Sciences X, (ss. 47–90). Eğitim Yayınevi.
  • Kaya, Y., & Çolak, M. (2020). Türkiye'de boşanma oranları ve sosyo-ekonomik faktörler. Türk Sosyal Bilimler Dergisi, 25(3), 456-472.
  • Kemsley, E. K. (1996). Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemometrics and Intelligent Laboratory Systems, 33(1), 47-61.
  • Kirk, D. (1996). Demographic transition theory. Population Studies, 50(3), 361–387.
  • Lee, R., & Mason, A. (2014). Is low fertility really a problem? Science, 346(6206), 229–234.
  • Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461.
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. https://doi.org/10.1002/9781119482260
  • Lutz, W., Butz, W. P., & KC, S. (Eds.). (2014). World population and human capital in the twenty-first century. Oxford University Press.
  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press.
  • Marques, A. M., Domingos, T., & Costa, P. (2020). Socio-economic typologies of EU regions using PCA and clustering. Regional Science Policy & Practice, 12(6), 1073–1093.
  • Notestein, F. W. (1945). Population—the long view. In (Editör Adı, Ed.), Food for the world (pp. 36–57).
  • OECD. (2020). Rural well-being: Geography of opportunities. OECD Publishing.
  • Öncel, H., & Levend, S. (2023). The effects of urban growth on natural areas: The three metropolitan areas in Türkiye. Environmental Monitoring and Assessment, 195(7), 816. https://doi.org/10.1007/s10661-023-11539-7
  • Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242.
  • Pereira, M. F., Vale, D. S., & Santana, P. (2023). Is walkability equitably distributed across socio-economic groups?–A spatial analysis for Lisbon metropolitan area. Journal of Transport Geography, 106, 103491.
  • Reher, D. (1998). Family ties in Western Europe: Persistent contrasts. Population and Development Review, 24(2), 203–234.
  • Rodríguez-Pose, A. (2018). The revenge of the places that don’t matter. Cambridge Journal of Regions, Economy and Society, 11(1), 189–209.
  • Saccenti, E. (2024). A gentle introduction to principal component analysis using tea-pots, dinosaurs, and pizza. Teaching Statistics, 46(1), 38-52. https://doi.org/10.1111/test.12363
  • Thornes, B., & Collard, J. (2023). Who divorces? Taylor & Francis.
  • Todaro, M. P. (1969). A model of labor migration and urban unemployment in less developed countries. American Economic Review, 59(1), 138-148.
  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • UN DESA. (2022). World social report.
  • UNDP. (2021). Regional human development report.

Türkiye'nin Demografik ve Sosyal Yapısının PCA ve K-Means Kümeleme Yöntemiyle Analizi

Yıl 2026, Cilt: 15 Sayı: 1, 146 - 166, 16.01.2026
https://doi.org/10.33206/mjss.1481386

Öz

Bu çalışmanın amacı, Türkiye'nin benzersiz konumundan ve karmaşık toplumundan yararlanıp, Türkiye'deki illerin demografik ve sosyoekonomik yapısını kapsamlı bir şekilde analiz ederek illerdeki demografik ve sosyoekonomik eşitsizlikleri araştırmaktır. Amaca uygun olarak TÜİK (Türkiye İstatistik Kurumu) tarafından açık veri olarak sağlanan 2010-2022 yılları arasında 81 ilin verilerini içeren çok boyutlu bir veri seti, Keşif Amaçlı Veri Analizi (EDA), Temel Bileşen Analizi (PCA) ve K-Ortalamalar kümelemesi gibi ileri veri analizi teknikleri kullanılarak incelenmiştir. Çalışmada, iç göç, nüfus artışı, yabancı nüfus yoğunluğu ve boşanma oranları gibi temel sosyoekonomik göstergeler ele alınmıştır. Analiz sonuçları, şehirler arasında göç kalıpları, nüfus artış hızı ve sosyoekonomik özellikler açısından önemli farklılıklar olduğunu ortaya koymaktadır. PCA ve kümeleme analizi, şehirleri demografik ve sosyoekonomik profillerine göre gruplandırarak bu farklılıkları daha detaylı bir şekilde anlamayı sağlamıştır. Çalışma, Türkiye'nin nüfus dinamikleri ve sosyal dokusunun anlaşılması, etkili yerel ve ulusal politikaların geliştirilmesi ve sosyal uyumun güçlendirilmesi açısından önemli bilgiler sunmaktadır. Sonuçlara bakılarak bazı önlemlerin alınmasının gerekliliği ortaya konulmuştur. Demografik ve sosyoekonomik profillerin çok boyutlu yapısı dikkate alınarak kentsel planlama, eğitim, sağlık ve sosyal hizmetler gibi alanlara özel önem verilmelidir.Göç akışının yoğun olduğu bölgelerde, sosyal hizmetlerin güçlendirilmesine, ekonomik fırsatların artırılmasına ve entegrasyon politikalarının geliştirilmesine öncelik vermelidir.Nüfus artış hızının düşük veya negatif olduğu bölgelerde nüfus artışını teşvik edecek önlemler ve ekonomik kalkınmayı destekleyici stratejiler uygulanmalıdır.

Etik Beyan

“Türkiye'nin Demografik ve Sosyal Yapısının PCA ve K-Means Kümeleme Yöntemiyle Analizi” başlıklı çalışmanın yazım sürecinde bilimsel kurallara, etik ve alıntı kurallarına uyulmuş; toplanan veriler üzerinde herhangi bir tahrifat yapılmamış ve bu çalışma herhangi başka bir akademik yayın ortamına değerlendirme için gönderilmemiştir.

Kaynakça

  • Ak, M. A. (2023). Comparative analysis of Turkey and Russia's public diplomacy on the Balkans (Example of the Russian World Foundation and Yunus Emre Institute). Marmara Üniversitesi Siyasal Bilimler Dergisi, 11(1), 1-22. https://doi.org/10.14782/marmarasbd.1159265
  • Akçapar, S. K., & Şimşek, D. (2016). Türkiye'de uluslararası göçün sosyo-ekonomik etkileri. Ankara Üniversitesi SBF Dergisi, 71(4), 1019-1042.
  • Barca, F., McCann, P., & Rodríguez-Pose, A. (2012). The case for regional development intervention: Place- based versus place-neutral approaches. Journal of Regional Science, 52(1), 134–152.
  • Behrens, J. T. (1997). Exploratory data analysis. In (Editör Adı, Ed.), Research methods in psychology (pp. 221- 236). Springer.
  • Bloom, D. E., & Canning, D. (2003). Contraception and the Celtic Tiger. The Economic and Social Review, 34(3), 229–247.
  • Da Poian, V., Theiling, B., Clough, L., McKinney, B., Major, J., Chen, J., & Hörst, S. (2023). Exploratory data analysis (EDA) machine learning approaches for ocean world analog mass spectrometry. Frontiers in Astronomy and Space Sciences, 10, 1134141. https://doi.org/10.3389/fspas.2023.1134141
  • Docquier, F., Machado, J., & Sekkat, K. (2015). Efficiency gains from liberalizing labor mobility. Scandinavian Journal of Economics, 117(2), 303-346. https://doi.org/10.1111/sjoe.12097
  • Eken, S. (2020). Büyük verinin interaktif görselleştirilmesi: Tableau üzerine öğrenci deneyimleri. Avrupa Bilim Ve Teknoloji Dergisi, (18), 262-271. https://doi.org/10.31590/ejosat.659823
  • Emekdaş, E. F. (2010). İmge arama sonuçlarının baskın kümeler kullanılarak gruplandırılması [Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü].
  • Fielding, T., & Ishikawa, Y. (2021). COVID-19 and migration: A research note on the effects of COVID-19 on internal migration rates and patterns in Japan. Population, Space and Place, 27(6), e2499. https://doi.org/10.1002/psp.2499
  • Filiztekin, A. (2020). Regional economic disparities and convergence in Turkey: A spatial approach. Growth and Change, 51(3), 1338–1359.
  • Göçmen, İ., & Ekmekçi, P. E. (2015). Türkiye'de iç göç ve ekonomik etkileri. Ege Akademik Bakış Dergisi, 15(2), 231-243.
  • Gündem, F. (2023). Beliefs, economics, and spatial regimes in voting behavior: The Turkish case, 2007–2018. Humanities and Social Sciences Communications, 10(1), 1-15.
  • İçduygu, A., & Nimer, M. (2020). The politics of an emerging “immigration country”: Turkey and its migrants. International Migration, 58(4), 270–289.
  • İslamoğlu, A. H., & Alnıaçık, Ü. (2014). Sosyal bilimlerde araştırma yöntemleri (511). Beta Yayınevi.
  • Jolliffe, I. T. (2002). Principal component analysis. Springer-Verlag.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202.
  • Jussibaliyeva, A., Iskakova, D., Kurmanalina, A., Khassenova, K., & Amerkhanova, I. (2023). Internal mıgration and its impact on population income in different sectors of economy. Science and Innovation, 2(A3), 125- 137.
  • Karataş, A. (2023). Global migration governance: An analysis of Turkey on the basis of migration governance indicators. İ. Dursunoğlu (Ed.), International Research in Social, Human and Administrative Sciences X, (ss. 47–90). Eğitim Yayınevi.
  • Kaya, Y., & Çolak, M. (2020). Türkiye'de boşanma oranları ve sosyo-ekonomik faktörler. Türk Sosyal Bilimler Dergisi, 25(3), 456-472.
  • Kemsley, E. K. (1996). Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemometrics and Intelligent Laboratory Systems, 33(1), 47-61.
  • Kirk, D. (1996). Demographic transition theory. Population Studies, 50(3), 361–387.
  • Lee, R., & Mason, A. (2014). Is low fertility really a problem? Science, 346(6206), 229–234.
  • Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461.
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. https://doi.org/10.1002/9781119482260
  • Lutz, W., Butz, W. P., & KC, S. (Eds.). (2014). World population and human capital in the twenty-first century. Oxford University Press.
  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press.
  • Marques, A. M., Domingos, T., & Costa, P. (2020). Socio-economic typologies of EU regions using PCA and clustering. Regional Science Policy & Practice, 12(6), 1073–1093.
  • Notestein, F. W. (1945). Population—the long view. In (Editör Adı, Ed.), Food for the world (pp. 36–57).
  • OECD. (2020). Rural well-being: Geography of opportunities. OECD Publishing.
  • Öncel, H., & Levend, S. (2023). The effects of urban growth on natural areas: The three metropolitan areas in Türkiye. Environmental Monitoring and Assessment, 195(7), 816. https://doi.org/10.1007/s10661-023-11539-7
  • Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242.
  • Pereira, M. F., Vale, D. S., & Santana, P. (2023). Is walkability equitably distributed across socio-economic groups?–A spatial analysis for Lisbon metropolitan area. Journal of Transport Geography, 106, 103491.
  • Reher, D. (1998). Family ties in Western Europe: Persistent contrasts. Population and Development Review, 24(2), 203–234.
  • Rodríguez-Pose, A. (2018). The revenge of the places that don’t matter. Cambridge Journal of Regions, Economy and Society, 11(1), 189–209.
  • Saccenti, E. (2024). A gentle introduction to principal component analysis using tea-pots, dinosaurs, and pizza. Teaching Statistics, 46(1), 38-52. https://doi.org/10.1111/test.12363
  • Thornes, B., & Collard, J. (2023). Who divorces? Taylor & Francis.
  • Todaro, M. P. (1969). A model of labor migration and urban unemployment in less developed countries. American Economic Review, 59(1), 138-148.
  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • UN DESA. (2022). World social report.
  • UNDP. (2021). Regional human development report.

Analysis of Turkey's Demographic and Social Structure Using PCA And K-Means Clustering

Yıl 2026, Cilt: 15 Sayı: 1, 146 - 166, 16.01.2026
https://doi.org/10.33206/mjss.1481386

Öz

This study aims to investigate the demographic and socioeconomic inequalities in the provinces by taking advantage of Turkey's unique location and complex society and comprehensively analyzing the demographic and socioeconomic structure of the provinces in Turkey. A multidimensional data set containing the data of 81 provinces between 2010 and 2022, provided as open data by TUIK (Turkish Statistical Institute) for the purpose, uses advanced data such as Exploratory Data Analysis (EDA), Principal Component Analysis (PCA) and K-Means clustering. Were examined using data analysis techniques. The study discussed fundamental socioeconomic indicators such as internal migration, population growth, foreign population density, and divorce rates. The analysis results reveal significant differences between cities regarding migration patterns, population growth rate, and socioeconomic characteristics. PCA and cluster analysis provided a more detailed understanding of these differences by grouping towns according to their demographic and socioeconomic profiles. The study provides essential information regarding Turkey's population dynamics and social fabric, developing effective local and national policies and strengthening social cohesion. Looking at the results, it was revealed that some precautions should be taken. Particular attention should be given to urban planning, education, health, and social services, considering the multidimensional structure of demographic and socioeconomic profiles. In regions with intense migration flows, priority should be given to strengthening social services, increasing economic opportunities, and developing integration policies. The population growth rate is low or negative. Measures to encourage population growth and strategies to support economic development should be implemented in the regions where it is located.

Etik Beyan

Scientific rules, ethics, and citation rules were followed during the writing process of the study titled "Analysis of Turkey's Demographic And Social Structure Using Pca And K-Means Clustering." There was no tampering with the data collected, and this study was not sent to any other academic publication environment for evaluation.

Kaynakça

  • Ak, M. A. (2023). Comparative analysis of Turkey and Russia's public diplomacy on the Balkans (Example of the Russian World Foundation and Yunus Emre Institute). Marmara Üniversitesi Siyasal Bilimler Dergisi, 11(1), 1-22. https://doi.org/10.14782/marmarasbd.1159265
  • Akçapar, S. K., & Şimşek, D. (2016). Türkiye'de uluslararası göçün sosyo-ekonomik etkileri. Ankara Üniversitesi SBF Dergisi, 71(4), 1019-1042.
  • Barca, F., McCann, P., & Rodríguez-Pose, A. (2012). The case for regional development intervention: Place- based versus place-neutral approaches. Journal of Regional Science, 52(1), 134–152.
  • Behrens, J. T. (1997). Exploratory data analysis. In (Editör Adı, Ed.), Research methods in psychology (pp. 221- 236). Springer.
  • Bloom, D. E., & Canning, D. (2003). Contraception and the Celtic Tiger. The Economic and Social Review, 34(3), 229–247.
  • Da Poian, V., Theiling, B., Clough, L., McKinney, B., Major, J., Chen, J., & Hörst, S. (2023). Exploratory data analysis (EDA) machine learning approaches for ocean world analog mass spectrometry. Frontiers in Astronomy and Space Sciences, 10, 1134141. https://doi.org/10.3389/fspas.2023.1134141
  • Docquier, F., Machado, J., & Sekkat, K. (2015). Efficiency gains from liberalizing labor mobility. Scandinavian Journal of Economics, 117(2), 303-346. https://doi.org/10.1111/sjoe.12097
  • Eken, S. (2020). Büyük verinin interaktif görselleştirilmesi: Tableau üzerine öğrenci deneyimleri. Avrupa Bilim Ve Teknoloji Dergisi, (18), 262-271. https://doi.org/10.31590/ejosat.659823
  • Emekdaş, E. F. (2010). İmge arama sonuçlarının baskın kümeler kullanılarak gruplandırılması [Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü].
  • Fielding, T., & Ishikawa, Y. (2021). COVID-19 and migration: A research note on the effects of COVID-19 on internal migration rates and patterns in Japan. Population, Space and Place, 27(6), e2499. https://doi.org/10.1002/psp.2499
  • Filiztekin, A. (2020). Regional economic disparities and convergence in Turkey: A spatial approach. Growth and Change, 51(3), 1338–1359.
  • Göçmen, İ., & Ekmekçi, P. E. (2015). Türkiye'de iç göç ve ekonomik etkileri. Ege Akademik Bakış Dergisi, 15(2), 231-243.
  • Gündem, F. (2023). Beliefs, economics, and spatial regimes in voting behavior: The Turkish case, 2007–2018. Humanities and Social Sciences Communications, 10(1), 1-15.
  • İçduygu, A., & Nimer, M. (2020). The politics of an emerging “immigration country”: Turkey and its migrants. International Migration, 58(4), 270–289.
  • İslamoğlu, A. H., & Alnıaçık, Ü. (2014). Sosyal bilimlerde araştırma yöntemleri (511). Beta Yayınevi.
  • Jolliffe, I. T. (2002). Principal component analysis. Springer-Verlag.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202.
  • Jussibaliyeva, A., Iskakova, D., Kurmanalina, A., Khassenova, K., & Amerkhanova, I. (2023). Internal mıgration and its impact on population income in different sectors of economy. Science and Innovation, 2(A3), 125- 137.
  • Karataş, A. (2023). Global migration governance: An analysis of Turkey on the basis of migration governance indicators. İ. Dursunoğlu (Ed.), International Research in Social, Human and Administrative Sciences X, (ss. 47–90). Eğitim Yayınevi.
  • Kaya, Y., & Çolak, M. (2020). Türkiye'de boşanma oranları ve sosyo-ekonomik faktörler. Türk Sosyal Bilimler Dergisi, 25(3), 456-472.
  • Kemsley, E. K. (1996). Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemometrics and Intelligent Laboratory Systems, 33(1), 47-61.
  • Kirk, D. (1996). Demographic transition theory. Population Studies, 50(3), 361–387.
  • Lee, R., & Mason, A. (2014). Is low fertility really a problem? Science, 346(6206), 229–234.
  • Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461.
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. https://doi.org/10.1002/9781119482260
  • Lutz, W., Butz, W. P., & KC, S. (Eds.). (2014). World population and human capital in the twenty-first century. Oxford University Press.
  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press.
  • Marques, A. M., Domingos, T., & Costa, P. (2020). Socio-economic typologies of EU regions using PCA and clustering. Regional Science Policy & Practice, 12(6), 1073–1093.
  • Notestein, F. W. (1945). Population—the long view. In (Editör Adı, Ed.), Food for the world (pp. 36–57).
  • OECD. (2020). Rural well-being: Geography of opportunities. OECD Publishing.
  • Öncel, H., & Levend, S. (2023). The effects of urban growth on natural areas: The three metropolitan areas in Türkiye. Environmental Monitoring and Assessment, 195(7), 816. https://doi.org/10.1007/s10661-023-11539-7
  • Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242.
  • Pereira, M. F., Vale, D. S., & Santana, P. (2023). Is walkability equitably distributed across socio-economic groups?–A spatial analysis for Lisbon metropolitan area. Journal of Transport Geography, 106, 103491.
  • Reher, D. (1998). Family ties in Western Europe: Persistent contrasts. Population and Development Review, 24(2), 203–234.
  • Rodríguez-Pose, A. (2018). The revenge of the places that don’t matter. Cambridge Journal of Regions, Economy and Society, 11(1), 189–209.
  • Saccenti, E. (2024). A gentle introduction to principal component analysis using tea-pots, dinosaurs, and pizza. Teaching Statistics, 46(1), 38-52. https://doi.org/10.1111/test.12363
  • Thornes, B., & Collard, J. (2023). Who divorces? Taylor & Francis.
  • Todaro, M. P. (1969). A model of labor migration and urban unemployment in less developed countries. American Economic Review, 59(1), 138-148.
  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • UN DESA. (2022). World social report.
  • UNDP. (2021). Regional human development report.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekonometrik ve İstatistiksel Yöntemler, Sosyal Demografi
Bölüm Araştırma Makalesi
Yazarlar

Doruk Ayberkin 0000-0003-3409-8926

Özel Sebetci 0000-0002-2996-0270

Gönderilme Tarihi 9 Mayıs 2024
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 16 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 15 Sayı: 1

Kaynak Göster

APA Ayberkin, D., & Sebetci, Ö. (2026). Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering. MANAS Sosyal Araştırmalar Dergisi, 15(1), 146-166. https://doi.org/10.33206/mjss.1481386
AMA Ayberkin D, Sebetci Ö. Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering. MJSS. Ocak 2026;15(1):146-166. doi:10.33206/mjss.1481386
Chicago Ayberkin, Doruk, ve Özel Sebetci. “Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering”. MANAS Sosyal Araştırmalar Dergisi 15, sy. 1 (Ocak 2026): 146-66. https://doi.org/10.33206/mjss.1481386.
EndNote Ayberkin D, Sebetci Ö (01 Ocak 2026) Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering. MANAS Sosyal Araştırmalar Dergisi 15 1 146–166.
IEEE D. Ayberkin ve Ö. Sebetci, “Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering”, MJSS, c. 15, sy. 1, ss. 146–166, 2026, doi: 10.33206/mjss.1481386.
ISNAD Ayberkin, Doruk - Sebetci, Özel. “Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering”. MANAS Sosyal Araştırmalar Dergisi 15/1 (Ocak2026), 146-166. https://doi.org/10.33206/mjss.1481386.
JAMA Ayberkin D, Sebetci Ö. Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering. MJSS. 2026;15:146–166.
MLA Ayberkin, Doruk ve Özel Sebetci. “Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering”. MANAS Sosyal Araştırmalar Dergisi, c. 15, sy. 1, 2026, ss. 146-6, doi:10.33206/mjss.1481386.
Vancouver Ayberkin D, Sebetci Ö. Analysis of Turkey’s Demographic and Social Structure Using PCA And K-Means Clustering. MJSS. 2026;15(1):146-6.

MANAS Journal of Social Studies (MANAS Sosyal Araştırmalar Dergisi)     


16155