Araştırma Makalesi
BibTex RIS Kaynak Göster

Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design

Yıl 2019, , 326 - 341, 29.01.2019
https://doi.org/10.33206/mjss.519112

Öz

While there is no certain method which provides solutions of Multiple Objective De Novo Programming problems, Multiple Objective Decision Making techniques can be applied for them. Therefore, goals have to be weighted and priorities have to be ranked for many methods. When the number of goal functions exceeds three, it is possible to get many different solution results. This is the first study to use Lexicographic Goal Programming for solutions of a Multi Objective De Novo Programming problem with positive ideal solutions. Additionally, the same problem was solved with Global Criteria Method, and the results were compared. The comparison concluded that Global Criteria Method could be used for priority ranking among the goals in Lexicographic Goal Programming. 


Kaynakça

  • Arora, J.S. (2004). Introduction to Optimum Design, Second edition, Elsevier, Amsterdam. Babić, Z. and Pavić, I. (1996). Multicriterial production programming by de novo programming approach, International Journal of Production Economics, vol.43, no.1, pp. 59-66.
  • Banik, S. and Bhattacharya, S. (2018). Weighted Goal Programming Approach for Solving Multi-Objective De Novo Programming Problems, International Journal of Engineering Research in Computer Science and Engineering (IJERCSE), Vol 5, Issue 2, February, pp.316-322.
  • Bhattacharya, D. and Chakraborty,S. (2018). Solution of the general multi-objective De-Novo programming problem using compensatory operator under fuzzy environment, IOP Conf. Series: Journal of Physics: Conf. Series 1039.
  • Boychuk ,L. and Ovchinnikov, V.(1973). Principal methods of solution of multicriterial optimization problems (survey), Soviet Automatic Control, vol. 6, pp. 1-4.
  • Charnes, A., Cooper, W.W., and Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming, Management Science, vol. 1, no. 2, pp. 138-151.
  • Charnes, A., and Cooper, W.W. (1961). Management Models and Industrial Applications of Linear Programming, Wiley, New York.
  • Charnes, A. and Cooper, W.W. (1977). Goal programming and multiple objective optimizations, Eur. J. Oper. Res., vol. 1, issue 1, pp. 39–54.
  • Flavell, R.B. (1976). A new goal programming formulation, Omega, vol. 4, no. 6, 731–732.
  • Hwang,C. L., and Masud, A.S. (1979) Multiple Objective Decision Making -Methods and ApplicationsA Stateof-the-Art Survey, Springer-Verlag Berlin.
  • Ignizio J.P., 1976. Goal Programming and Extensions, Lexington Books, Lexington, MA. Ijiri, Y. (1965). Management Goals and Accounting for Control, Publishing Co. Amsterdam, North-Holland.
  • Lai, Y.J. and Hwang,C.L. (1992). Fuzzy Mathematical Programming Springer-Verlag, Berlin
  • Lee, S.M. (1972). Goal Programming for Decision Analysis, Auerback, Philadelphia, PA.
  • Li, R.J. and Lee, E.S. (1990). Fuzzy approaches to multicriteria de novo programs, Journal of Math. Anl. and Appl., vol. 153, issue 1, pp. 97-111.
  • Li, R.J. and Lee, E.S. (1993). “Fuzzy multiple objective programming and compromise programming with pareto optimum,” Fuzzy Sets and Systems, vol. 53, issue 3, pp. 275-288.
  • Lu,J., Zhang,G., Ruan, D. and Wu, F. (2007). Multi-Objective Group Decision Making Methods, Software and Applications With Fuzzy Set Techniques, Inperial College Press, Singapore.
  • Romero, C. (1991). Handbook of Critical Issues in Goal Programming, Pergamon Press,New York.
  • Salukvadze, M. (1974). On the existence of solution in problems of optimization under vector valued criteria, Journal of Optimization Theory and Applications, 12(2), pp.203-217.
  • Shi, Y. (1995). Studuies on optimum-path ratios in multicriteria de novo programming problems, Computers. Math. Applic. 29(5), pp.43-50.
  • Simon, H.A. (1960). The New Science of Management Decision, Harper & Brothers Publishers, First Edition, New York. Tabucanon, M.T. (1988). Multiple Criteria Decision Making In Industry, Elsevier, New York.
  • Tamiz,M., Jones, D.F., and Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art, European Journal of Operational Research, 111, pp.569–581.
  • Umarusman, N. (2013). Min-max goal programming approach for solving multi-objective de novo programming problems, International Journal of Operations Research, 10(2), pp. 92-99.
  • Umarusman, N. and Türkmen, N. (2013). Building optimum production settings using de novo programming with global criterion method, International Journal of Computer Applications, 82(18), pp.12-14.
  • Umarusman, N. (2018). Fuzzy Goal Programming Problem Based on Minmax Approach for Optimal System Design, Alphanumeric Journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Volume 6, Issue 1, pp.177-193.
  • Yaralıoğlu, K. (2010). Karar Verme Yöntemleri, Detay Yayıncılık. Ankara. Zeleny, M. 1976. Multi-objective design of high-productivity systems, In.Proc. Joint Automatic Control Conf., paper, APPL9-4, New York.
  • Zeleny, M. (1984). Multicriterion design of high-productivity systems: extension and application, decision making with multiple objective, in: Y.H. Yacov and V. Chankong, (Eds), Springer-Verlag, New York, pp. 308- 321.
  • Zeleny, M. (1986). Optimal system design with multiple criteria: De Novo programming approach, Engineering Costs and Production Economics, 10, pp. 89–94.
  • Zeleny, M. (1990). Optimizing given systems vs. Designing optimal systems: the de novo programming approach, İnt. J. General System, 17, pp.295-307.
  • Zhuang, Z.Y. and Hocine, A. (2018). Meta goal programing approach for solving multi-criteria de Novo programing problem, European Journal Of Operational Research, 265(1), pp. 228-238.

Öncelikli Hedef Programlamada Önceliklerin Belirlenmesinde Global Kriter Yöntem Kullanımı ve Optimal Sistem Tasarımı İçin Bir Uygulama

Yıl 2019, , 326 - 341, 29.01.2019
https://doi.org/10.33206/mjss.519112

Öz

Çok Amaçlı De Novo Programlama problemlerinin çözümünü gerçekleştiren kesin bir yöntem olmamasına rağmen Çok Amaçlı Karar Verme teknikleri de novo için çözümde kullanılabilmektedir. Bu durum sebebiyle birçok yöntem için amaçlar arasında bir ağırlıklandırma veya öncelik sıralamasının yapılması gerekmektedir. Özellikle amaç fonksiyonu sayısının 3’ten fazla olması durumunda çok farklı çözüm sonucu elde etmek mümkündür. Bu çalışmada pozitif ideal çözümler kullanılarak Çok Amaçlı De Novo Programlama probleminin çözümü için ilk kez Öncelikli Hedef Programlama kullanılmıştır. Ayrıca aynı problem Global Kriter yönteme göre çözülerek elde edilen sonuçlar karşılaştırılmıştır. Bu karşılaştırma sonucunda Öncelikli Hedef Programlamada hedefler arasındaki öncelik sıralamasının yapılmasında Global Kriter Yöntemin kullanılabileceği ortaya çıkmıştır. 

Kaynakça

  • Arora, J.S. (2004). Introduction to Optimum Design, Second edition, Elsevier, Amsterdam. Babić, Z. and Pavić, I. (1996). Multicriterial production programming by de novo programming approach, International Journal of Production Economics, vol.43, no.1, pp. 59-66.
  • Banik, S. and Bhattacharya, S. (2018). Weighted Goal Programming Approach for Solving Multi-Objective De Novo Programming Problems, International Journal of Engineering Research in Computer Science and Engineering (IJERCSE), Vol 5, Issue 2, February, pp.316-322.
  • Bhattacharya, D. and Chakraborty,S. (2018). Solution of the general multi-objective De-Novo programming problem using compensatory operator under fuzzy environment, IOP Conf. Series: Journal of Physics: Conf. Series 1039.
  • Boychuk ,L. and Ovchinnikov, V.(1973). Principal methods of solution of multicriterial optimization problems (survey), Soviet Automatic Control, vol. 6, pp. 1-4.
  • Charnes, A., Cooper, W.W., and Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming, Management Science, vol. 1, no. 2, pp. 138-151.
  • Charnes, A., and Cooper, W.W. (1961). Management Models and Industrial Applications of Linear Programming, Wiley, New York.
  • Charnes, A. and Cooper, W.W. (1977). Goal programming and multiple objective optimizations, Eur. J. Oper. Res., vol. 1, issue 1, pp. 39–54.
  • Flavell, R.B. (1976). A new goal programming formulation, Omega, vol. 4, no. 6, 731–732.
  • Hwang,C. L., and Masud, A.S. (1979) Multiple Objective Decision Making -Methods and ApplicationsA Stateof-the-Art Survey, Springer-Verlag Berlin.
  • Ignizio J.P., 1976. Goal Programming and Extensions, Lexington Books, Lexington, MA. Ijiri, Y. (1965). Management Goals and Accounting for Control, Publishing Co. Amsterdam, North-Holland.
  • Lai, Y.J. and Hwang,C.L. (1992). Fuzzy Mathematical Programming Springer-Verlag, Berlin
  • Lee, S.M. (1972). Goal Programming for Decision Analysis, Auerback, Philadelphia, PA.
  • Li, R.J. and Lee, E.S. (1990). Fuzzy approaches to multicriteria de novo programs, Journal of Math. Anl. and Appl., vol. 153, issue 1, pp. 97-111.
  • Li, R.J. and Lee, E.S. (1993). “Fuzzy multiple objective programming and compromise programming with pareto optimum,” Fuzzy Sets and Systems, vol. 53, issue 3, pp. 275-288.
  • Lu,J., Zhang,G., Ruan, D. and Wu, F. (2007). Multi-Objective Group Decision Making Methods, Software and Applications With Fuzzy Set Techniques, Inperial College Press, Singapore.
  • Romero, C. (1991). Handbook of Critical Issues in Goal Programming, Pergamon Press,New York.
  • Salukvadze, M. (1974). On the existence of solution in problems of optimization under vector valued criteria, Journal of Optimization Theory and Applications, 12(2), pp.203-217.
  • Shi, Y. (1995). Studuies on optimum-path ratios in multicriteria de novo programming problems, Computers. Math. Applic. 29(5), pp.43-50.
  • Simon, H.A. (1960). The New Science of Management Decision, Harper & Brothers Publishers, First Edition, New York. Tabucanon, M.T. (1988). Multiple Criteria Decision Making In Industry, Elsevier, New York.
  • Tamiz,M., Jones, D.F., and Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art, European Journal of Operational Research, 111, pp.569–581.
  • Umarusman, N. (2013). Min-max goal programming approach for solving multi-objective de novo programming problems, International Journal of Operations Research, 10(2), pp. 92-99.
  • Umarusman, N. and Türkmen, N. (2013). Building optimum production settings using de novo programming with global criterion method, International Journal of Computer Applications, 82(18), pp.12-14.
  • Umarusman, N. (2018). Fuzzy Goal Programming Problem Based on Minmax Approach for Optimal System Design, Alphanumeric Journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Volume 6, Issue 1, pp.177-193.
  • Yaralıoğlu, K. (2010). Karar Verme Yöntemleri, Detay Yayıncılık. Ankara. Zeleny, M. 1976. Multi-objective design of high-productivity systems, In.Proc. Joint Automatic Control Conf., paper, APPL9-4, New York.
  • Zeleny, M. (1984). Multicriterion design of high-productivity systems: extension and application, decision making with multiple objective, in: Y.H. Yacov and V. Chankong, (Eds), Springer-Verlag, New York, pp. 308- 321.
  • Zeleny, M. (1986). Optimal system design with multiple criteria: De Novo programming approach, Engineering Costs and Production Economics, 10, pp. 89–94.
  • Zeleny, M. (1990). Optimizing given systems vs. Designing optimal systems: the de novo programming approach, İnt. J. General System, 17, pp.295-307.
  • Zhuang, Z.Y. and Hocine, A. (2018). Meta goal programing approach for solving multi-criteria de Novo programing problem, European Journal Of Operational Research, 265(1), pp. 228-238.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Nurullah Umarusman 0000-0001-6535-5329

Yayımlanma Tarihi 29 Ocak 2019
Gönderilme Tarihi 17 Temmuz 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Umarusman, N. (2019). Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design. MANAS Sosyal Araştırmalar Dergisi, 8(1), 326-341. https://doi.org/10.33206/mjss.519112
AMA Umarusman N. Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design. MJSS. Ocak 2019;8(1):326-341. doi:10.33206/mjss.519112
Chicago Umarusman, Nurullah. “Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design”. MANAS Sosyal Araştırmalar Dergisi 8, sy. 1 (Ocak 2019): 326-41. https://doi.org/10.33206/mjss.519112.
EndNote Umarusman N (01 Ocak 2019) Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design. MANAS Sosyal Araştırmalar Dergisi 8 1 326–341.
IEEE N. Umarusman, “Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design”, MJSS, c. 8, sy. 1, ss. 326–341, 2019, doi: 10.33206/mjss.519112.
ISNAD Umarusman, Nurullah. “Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design”. MANAS Sosyal Araştırmalar Dergisi 8/1 (Ocak 2019), 326-341. https://doi.org/10.33206/mjss.519112.
JAMA Umarusman N. Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design. MJSS. 2019;8:326–341.
MLA Umarusman, Nurullah. “Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design”. MANAS Sosyal Araştırmalar Dergisi, c. 8, sy. 1, 2019, ss. 326-41, doi:10.33206/mjss.519112.
Vancouver Umarusman N. Using Global Criterion Method to Define Priorities in Lexicographic Goal Programming and an Application for Optimal System Design. MJSS. 2019;8(1):326-41.

MANAS Journal of Social Studies (MANAS Sosyal Araştırmalar Dergisi)     


16155