Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of salicylic acid and silicon on early stage cotton development under normal irrigation and water stress conditions

Yıl 2024, , 534 - 551, 12.08.2024
https://doi.org/10.37908/mkutbd.1428057

Öz

This research was carried out to determine the effect of salicylic acid and silicon application on plant development and some physiological parameters in cotton under normal irrigation and 50% water stress conditions. Three factors were considered in the experiment: irrigation, variety and application. Three cotton varieties (Stoneville 468, DP 499 and SJ-U 86) were used as material, two levels of irrigation (Normal irrigation and 50% water stress), and four salicylic acid and silicon applications (Control, SA, SI and SA+SI) were performed. In the study, stem length, stem weight, number of nodes and leaf area showed higher values under normal irrigation, while chlorophyll content and root/shoot ratio showed higher values under water stress conditions. Significant differences were obtained among the varieties in terms of root length, root weight, stem length, stem weight, number of nodes and canopy temperature. It was determined that salicylic acid and silicon applications had significant effects on root length, stem weight and root/shoot ratio and the highest values in terms of these properties were obtained by applying salicylic acid and silicon together. As a result of the study, many growth indicators in the plant were negatively affected by water stress and the best values among the varieties were obtained from the SJ-U 86 variety. In the study, it is seen that more promising results are obtained by applying salicylic acid and silicon together, and it is suggested that the SJ-U 86 variety can be preferred under water stress conditions, but water stress should be avoided.

Kaynakça

  • Aamer, M., Chattha, M.U., Hassan, M.U., Ahmed, H.A.I., Haiying, T., Rasheed, A., Guoqin, H., & Shahzad, B. (2022). Regulation of photosynthesis by salicylic acid under optimal and suboptimal conditions. Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects, 258-269. https://doi.org/10.1002/9781119671107.ch14
  • Arif, T., Chaudhary, M.T., Majeed, S., Rana, I.A., Ali, Z., Elansary, H.O., Moussa, I.M., Sun, S., & Azhar, M.T. (2023). Exploitation of various physio-morphological and biochemical traits for the identification of drought tolerant genotypes in cotton. BMC Plant Biology, 23 (1), 508. https://doi.org/10.1186/s12870-023-04441-2
  • Ayele, A.G., Dever, J.K., Kelly, C.M., Sheehan, M., Morgan, V., & Payton, P. (2020). Responses of upland cotton (Gossypium hirsutum L.) lines to irrigated and rainfed conditions of texas high plains. Plants, 9 (11), 1598.
  • Aziz, M., Ashraf, M., & Javaid, M.M. (2018). Enhancement in cotton growth and yield using novel growth promoting substances under water limited conditions. Pakistan Journal of Botany, 50 (5), 1691-1701. https://doi.org/10.3390/plants9111598
  • Bagautdinova, Z.Z., Omelyanchuk, N., Tyapkin, A.V., Kovrizhnykh, V.V., Lavrekha, V.V., & Zemlyanskaya, E.V. (2022). Salicylic acid in root growth and development. International Journal of Molecular Sciences, 23 (4), 2228. https://doi.org/ 10.3390/ijms23042228
  • Barros, T.C., de Mello Prado, R., Roque, C.G., Arf, M.V., & Vilela, R.G. (2019). Silicon and salicylic acid in the physiology and yield of cotton. Journal of Plant Nutrition, 42 (5), 458-465. https://doi.org/10.1080/01904167.2019.1567765
  • Başal, H., & Ünay, A. (2006). Water stress in cotton (Gossypium hirsutum L.). Ege Üniversitesi Ziraat Fakültesi Dergisi, 43 (3), 101-111.
  • Borzouyi, Z., Armin, M., & Marvi, H. (2021). The effect of time and type of stress moderators on yield and yield components of cotton on conventional and double-cropping systems under saline conditions. Journal of Cotton Research, 4 (1), 1-15. https://doi.org/10.1186/s42397-021-00103-6
  • Cao, Z., Wang, X., & Gao, Y. (2022). Effect of plant growth regulators on cotton seedling root growth parameters and enzyme activity. Plants, 11, 2964. https:// doi.org/10.3390/plants11212964
  • Conaty, W.C., Mahan, J.R., Neilsen, J.E., Tan, D.K., Yeates, S.J., & Sutton, B.G. (2015). The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Research, 183, 329-341. https://doi.org/10.1016/j.fcr.2015.08.010
  • Culpan, E., & Arslan, B. (2018). Salisilik asit uygulamasının aspir (Carthamus tinctorius L.) çeşitlerinin verim ve bazı kalite özelliklerine etkisinin araştırılması. Akademik Ziraat Dergisi, 7 (2), 173-178. https://doi.org/10.29278/azd.476336
  • de Souza Junior, J.P., de Mello Prado, R., Soares, M.B., Silva, F.J.L., Guedes, V.H.F., Sarah, M.M.S., & Cazetta, J.O. (2021). Effect of different foliar silicon sources on cotton plants. Journal of Soil Science and Plant Nutrition, 21, 95-103. https://doi.org/10.1007/s42729-020-00345-4
  • Dong, Y.J., Wang, Z.L., Zhang, J.W., Liu, S., He, Z.L., & He, M.R. (2015). Interaction effects of nitric oxide and salicylic acid in alleviating salt stress of Gossypium hirsutum L. Journal of Soil Science and Plant Nutrition, 15 (3), 561-573. https://doi.org/10.4067/S0718-95162015005000024
  • El‐Sherif, N.A. (2022). Salicylic acid and its crosstalk with other plant hormones under stressful environments. Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects, 304-317. https://doi.org/10.1002/9781119671107.ch16
  • Ferraz, R.L.D.S., Costa, P.D.S., Magalhães, I.D., Medeiros, A.D.S., Viégas, P.R.A., & Melo, A.S.D. (2021). Physiological adjustments, fiber yield and quality of colored cotton BRS Topázio cultivar under leaf silicon spraying. Ciência e Agrotecnologia, 45, e005721. https://doi.org/10.1590/1413-7054202145005721
  • Gerik, T.J., Faver, K.L., Thaxton, P.M., & El‐Zik, K.M. (1996). Late season water stress in cotton: I. Plant growth, water use, and yield. Crop Science, 36 (4), 914-921. https://doi.org/10.2135/cropsci1996.0011183X003600040017x
  • Heidari, M., Moradi, M., Armin, M., & Amerian, M.R. (2022). Effects of foliar application of salicylic acid and calcium chloride on yield, yield components and some physiological parameters in cotton. Sustainability in Food and Agriculture, 3, 28-32. https://doi.org/10.26480/sfna.01.2022.28.32
  • Hussein, M.M., Mehanna, H., & Abou-Baker, N.H. (2012). Growth, photosynthetic pigmentsand mineral status of cotton plants as affected by salicylic acid and salt stress. Journal of Applied Sciences Research, (November), 5476-5484.
  • Jaafar, K.S., Mohammed, M.A., & Mohammed, S. M. (2021). Screening for drought tolerance in cotton (Gossypium hirsutum L.) using in vitro technique. Journal of Dryland Agriculture, 7 (4), 52-59. https://doi.org/10.5897/JODA2021.0067
  • Jam, B.J., Shekari, F., Andalibi, B., Fotovat, R., Jafarian, V., Najaf, J., Uberti, D., & Mastinu, A. (2023). Impact of silicon foliar application on the growth and physiological traits of Carthamus tinctorius L. exposed to salt stress. Silicon, 15, 1235-1245.
  • Janda, T., Gondor, O.K., Yordanova, R., Szalai, G., & Pál, M. (2014). Salicylic acid and photosynthesis: signalling and effects. Acta Physiologiae Plantarum, 36, 2537-2546. https://doi.org/10.1007/s11738-014-1620-y
  • Karademir, Ç., Karademir, E., Çopur, O., & Gençer, O. (2012). Effect of drought stress on leaf area in cotton (Gossypium hirsutum L.). 11th Meeting of Inter-Regional Cooperative Research Network on Cotton for the Mediterranean and Middle East Regions, 5-7 November, Antalya.
  • Kassem, M. (2008). Cotton response to foliar application of salicylic acid under the environmental conditions of upper Egypt. Egyptian Journal of Agricultural Research, 86 (4), 1477-1488.
  • Kaydan, D., Yağmur, M., & Okut, N. (2007). Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarım Bilimleri Dergisi, 13 (2) 114-119. https://doi.org/ 10.1501/Tarimbil_0000000444
  • Kazemi, M., Gholami, M., & Hassanvand, F. (2012). Effects of silicon on antioxidative defense system and membrane lipid peroxidation in gerbera cut flower. Asian Journal of Biochemistry, 7 (3), 171-176. https://doi.org/10.3923/ajb.2012.171.176
  • Khandaker, L., Akond, M., & Oba, S. (2011). Foliar Application of salicylic acid ımproved the growth, yield and leaf’s bioactive compounds in red amaranth (Amaranthus tricolor L.). Vegetable Crops Research Bulletin, 74, 77-86. https://doi.org/10.2478/v10032-011-0006-6
  • Kılıç, R., & Karademir, C. (2023). Effect of salicylic acid application on cotton (Gossypium hirsutum L.) yield and fibre quality. Journal of Applied Life Sciences and Environment, 56 (4) (196), 597-617. https://doi.org/10.46909/alse-564118
  • Kleier, D.A. (1988). Phloem mobility of xenobiotics: I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiology, 86 (3), 803-810. https://doi.org/10.1104/pp.86.3.803
  • Koentrojo, Y., Sukendah, S., Purwanto, E., & Purnomo, D. (2020). Stomatal behaviour of soybean under drought stress with silicon application. Annals of Agri-Bio Research, 25 (1), 103-109.
  • Kou, X., Han, W., & Kang, J. (2022). Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13, 1085409. https://doi.org. 10.3389/fpls.2022.1085409
  • Laing, M., & Adandonon, A. (2005). Silicon and insect management–review. In Proceedings of the III Silicon in Agriculture Conference (pp. 22-26).
  • Latif, F., Ullah, F., Mehmood, S., Khattak, A., Khan, A.U., Khan, S., & Husain, I. (2016). Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 66 (4), 325-332. https://doi.org/10.1080/09064710.2015.1117133
  • Liang, Y., Liu, H., Fu, Y., Li, P., Li, S., & Gao, Y. (2023). Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress. BMC Plant Biology, 23 (1), 504. https://doi.org/10.1186/s12870-023-04509-z
  • Ludlow, M.M., & Muchow, R.C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107-153. https://doi.org/10.1016/S0065-2113(08)60477-0
  • Luo, H.H., Zhang, Y.L., & Zhang, W.F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54 (1), 65-73. https://doi.org/ 10.1007/s11099-015-0165-7
  • Loka, D.A., Oosterhuis, M., & Ritchie, G.L. (2011). Water-deficit stress in cotton. pp. 37-72. In: D.M. Oosterhuis (ed.). Stress physiology in cotton. The Cotton Foundation, Memphis, Tennis.
  • Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50 (1), 11-18. https://doi.org/10.1080/00380768.2004.10408447
  • Ma, J.F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11 (8), 392-397. https://doi.org/10.1016/j.tplants.2006.06.007
  • Mahmood, T., Iqbal, M.S., Li, H., Nazir, M.F., Khalid, S., Sarfraz, Z., Hu, D., Baojun, C., Geng, X., Tajo, S.M., Dev, W., Iqbal, Z., Zhao, P., Hu, G., & Du, X. (2022). Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology, 22 (1), 331. https://doi.org/10.1186/s12870-022-03724-4
  • Malik, R.S., Dhankar, J.S., & Turner, N.C. (1979). Influence of soil water deficits on root growth of cotton seedlings. Plant and Soil, 53, 109-115.
  • Mamatha, K., & Jaybhaye, P.R. (2018). Impact of drought weather condition on bt cotton growth, development and yield. International Journal of Current Microbiology and Applied Science, 6, 2332-2338.
  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126 (5), 969-980. https://doi.org/10.1016/j.cell.2006.06.054
  • Monteoliva, M.I., Guzzo, M.C., & Posada, G.A. (2021). Breeding for drought tolerance by monitoring chlorophyll content. https://www.walshmedicalmedia.com/author/mariela-ineacutes-monteoliva-21662
  • Naz, S., Bilal, A., Saddiq, B., Ejaz, S., Ali, S., Ain Haider, S.T., Sardar, H., Nasir, B., Ahmad, I., & Tiwari, R.K., Lal, M.K., Shakoor, A., Alyemeni, M.N., Mushtaq, N., & Altaf, M.A. (2022). Foliar application of salicylic acid ımproved growth, yield, quality and photosynthesis of pea (Pisum sativum L.) by ımproving antioxidant defense mechanism under saline conditions. Sustainability, 14, 14180. https://doi.org/10.3390/su142114180
  • Ninanya, J., Ramírez, D.A., Rinza, J., Silva-Díaz, C., Cervantes, M., García, J., & Quiroz, R. (2021). Canopy temperature as a key physiological trait to ımprove yield prediction under water restrictions in potato. Agronomy, 11, 1436. https:// doi.org/10.3390/agronomy11071436
  • Omar, A.M., Menshawi, M.E., Okkiah, S.E., & EL Sabagh, A. (2018). Foliar application of organic compounds stimulate cotton (Gossypium barbadense L.) to survive late sown condition. Open Agriculture, 3, 684-697. https://doi.org/10.1515/opag-2018-0072
  • Ödemiş, B., & Kazgöz Candemir, D. (2023). The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (1), 140-149. https://doi.org/10.18016/ksutarimdoga.vi.992764
  • Pace, P.F., Cralle, H.T., El-Halawany, S.H.M., Cothren, J.T., & Senseman, S.A. (1999). Drought-induced changes in shoot and root growth of young cotton plants. Journal of Cotton Science, 3, 183-187.
  • Pettigrew, W.T. (2004). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96 (2), 377-383. https://doi.org/10.2134/agronj2004.3770
  • Raskın, I., Skubatz, H., Tang, W., & Meeuse, B.J. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66 (4), 369-373. https://doi.org/10.1093/oxfordjournals.aob.a088037
  • Rehman, T., Tabassum, B., Yousaf, S., Sarwar, G., & Qaisar, U. (2022) Consequences of drought stress encountered during seedling stage on physiology and yield of cultivated cotton. Frontiers in Plant Science, 13, 906444. https://doi.org/10.3389/fpls.2022.906444
  • Rocher, F., Chollet, J.F., Jousse, C., & Bonnemain, J.L. (2006). Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiology, 141 (4), 1684-1693. https://doi.org/10.1104/pp.106.082537
  • Saleem, M.F., Sammar Raza, M.A., Ahmad, S., Khan, I.H., & Shahid, A.M. (2016). Understanding and mitigating the impacts of drought stress in cotton-a review. Pakistan Journal of Agricultural Sciences, 53 (3). https://doi.org/10.21162/PAKJAS/16.3341
  • Samal, I., Bhoi, T.K., Mahanta, D.K., & Komal, J. (2023). Establishing the role of silicon (Si) in Plant resistance to ınsects: A bibliometric approach. Silicon, 1-10. https://doi.org/10.1007/s12633-023-02821-9
  • Santos, A.F.B. dos; Teixeira, G.C.M., Campos, C.N.S., Baio, F.H.R., de Mello Prado, R., Teodoro, L.P.R., Vilela, R.G., de Paiva Neto, V.B., & Teodoro, P.E. (2020). Silicon increases chlorophyll and photosynthesis and improves height and NDVI of cotton (Gossypium hirsutum L. r. latifolium Hutch). Research, Society and Development, 9 (7). https://doi.org/ 10.33448/rsd-v9i7.3826.
  • Sarwar, M., Saleem, M.F., Ullah, N., Rizwan, M., Ali, S., Shahid, M.R., Alamri, S.A., Alyemeni, M.N., & Ahmad, P. (2018). Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Science Report, 8, 17086. https://doi.org/10.1038/s41598-018-35420-5
  • Shahzad, S., Ali, S., Ahmad, R., Ercisli, S., & Anjum, M.A. (2022). Foliar application of silicon enhances growth, flower yield, quality and postharvest life of tuberose (Polianthes tuberosa L.) under saline conditions by ımproving antioxidant defense mechanism. Silicon, 14, 1511-1518. https://doi.org/10.1007/s12633-021-00974-z
  • Sharma, A., Bhardwaj, R., Kumar, V., Zheng, B., & Tripathi, D. K. (Eds.). (2022a). Managing plant stress using salicylic acid: physiological and molecular aspects, John Wiley & Sons. Editor(s): Sharma, A., Bhardwaj, R., Kumar, V., Zheng, B., Tripathi, D.K. https://doi.org/10.1002/9781119671107
  • Sharma, N., Sharma, V., Sharma, V., & Bhardwaj, R. (2022b). Salicylic acid: A regulator of plant growth and development. Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects, 1-15. https://doi.org/10.1002/9781119671107.ch1
  • Sonone, M.P., Rathod, T.H., & Dhage, P.S. (2020). Effect of moisture stress on total chlorophyll content of cotton. Journal of Pharmacognosy and Phytochemistry, 9 (3), 2206-2208. https://doi.org/10.22271/phyto.2020.v9.i3aj.11641
  • Tripathi, P., Subedi, S., Khan, A.L., Chung, Y.S., & Kim, Y. (2021). Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants, 10 (5), 885. https://doi.org/10.3390/plants10050885
  • Ullah, A., Sun, H., Yang, X., & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15 (3), 271-284. https://doi.org/10.1111/pbi.12688
  • Veesar, N.F., Jatoi, W.A., Gandahi, N., Aisha, G., Solangi, A.H., & Memon, S. (2020). Evaluation of cotton genotypes for drought tolerance and their correlation study at seedling stage. Biomedical Journal of Scientific & Technical Research, 29 (1), 22090-22099. https://doi.org/ 10.26717/BJSTR.2020.29.004738
  • Verdonck, O., & Gabriels, R. (1992). Reference method for the determination of physical properties of plant substrates. II. Reference method for the determination of chemical properties of plant substrates. Acta Horticulturae, 302 (10), 169-79. https://doi.org/10.17660/ActaHortic.1992.302.16
  • Vlot, A.C., Dempsey, D.M.A., & Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
  • Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., & Zhou, Z. (2016). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56 (3), 1265-1276. https://doi.org/10.2135/cropsci2015.08.0477
  • Wang, M., Wang, R., Mur, L.A.J., Ruan, J., Shen, Q., & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research, 8. https://doi.org/10.1038/s41438-021-00681-1
  • Zargar, S.M., Macha, M.A., Nazir, M., Agrawal, G.K., & Rakwal, R. (2012). Silicon: A multitalented micronutrient in OMICS perspective - An update. Current Proteomics, 9 (4), 245-254. https://doi.org/10.2174/157016412805219152
  • Zargar, S.M., Mahajan, R., Bhat, J., Nazir, M., & Deshmuck, R. (2019). Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. Biotech, 9, 73. https://doi.org/10.1007/s13205-019-1613-z
  • Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.2174/157016412805219152
  • Zhou, G., Zhou, X., Nie, Y., Bai, S.H., Zhou, L., & Shao, J., Cheng, W., Wang, J., Hu, F., & Fu, Y. (2018). Drought induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environment, 41 (11), 2589-2599. https://doi.org/ 10.1111/pce.13356

Salisilik asit ve silisyumun normal sulama ve su stresi koşullarında erken dönem pamuk gelişimine etkisi

Yıl 2024, , 534 - 551, 12.08.2024
https://doi.org/10.37908/mkutbd.1428057

Öz

Bu araştırma pamukta normal sulama ve %50 su stresi koşullarında salisilik asit ve silisyum uygulamasının bitki gelişimine ve bazı fizyolojik parametrelere etkisini belirlemek amacıyla yürütülmüştür. Denemede sulama, çeşit ve uygulama olmak üzere üç faktör ele alınmıştır. Materyal olarak üç pamuk çeşidi kullanılmış (Stoneville 468, DP 499 ve SJ-U 86), sulamanın iki seviyesi (Normal sulama ve % 50 su stresi), salisilik asit ile silisyum ise (Kontrol, SA, Sİ ve SA+Sİ) 4 uygulama olarak ele alınmıştır. Araştırmada gövde uzunluğu, gövde ağırlığı, boğum sayısı ve yaprak alanı normal sulama koşullarında, klorofil içeriği ve kök/gövde oranı ise su stresi koşullarında daha yüksek değer vermiştir. Çeşitler arasında kök uzunluğu, kök ağırlığı, gövde uzunluğu, gövde ağırlığı, boğum sayısı ve kanopi sıcaklığı bakımından önemli farklılıklar elde edilmiştir. Salisilik asit ve silisyum uygulamalarının kök uzunluğu ve gövde ağırlığı ile kök/gövde oranı üzerine önemli etkilerinin bulunduğu belirlenmiş, bu özellikler bakımından en yüksek değerler salisilik asit ve silisyumun birlikte uygulanması ile elde edilmiştir. Çalışma sonucunda su stresinin bitkide birçok büyüme göstergesini olumsuz etkilediği ve çeşitler arasında en iyi değerlerin SJ-U 86 çeşidinden elde edildiği tespit edilmiştir. Salisilik asit ve silisyumun birlikte uygulanması ile daha ümit var sonuçların elde edildiği, su stresi koşullarında SJ-U 86 çeşidinin tercih edilebileceği, ancak su stresinden kaçınılması gerektiği önerilmektedir.

Kaynakça

  • Aamer, M., Chattha, M.U., Hassan, M.U., Ahmed, H.A.I., Haiying, T., Rasheed, A., Guoqin, H., & Shahzad, B. (2022). Regulation of photosynthesis by salicylic acid under optimal and suboptimal conditions. Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects, 258-269. https://doi.org/10.1002/9781119671107.ch14
  • Arif, T., Chaudhary, M.T., Majeed, S., Rana, I.A., Ali, Z., Elansary, H.O., Moussa, I.M., Sun, S., & Azhar, M.T. (2023). Exploitation of various physio-morphological and biochemical traits for the identification of drought tolerant genotypes in cotton. BMC Plant Biology, 23 (1), 508. https://doi.org/10.1186/s12870-023-04441-2
  • Ayele, A.G., Dever, J.K., Kelly, C.M., Sheehan, M., Morgan, V., & Payton, P. (2020). Responses of upland cotton (Gossypium hirsutum L.) lines to irrigated and rainfed conditions of texas high plains. Plants, 9 (11), 1598.
  • Aziz, M., Ashraf, M., & Javaid, M.M. (2018). Enhancement in cotton growth and yield using novel growth promoting substances under water limited conditions. Pakistan Journal of Botany, 50 (5), 1691-1701. https://doi.org/10.3390/plants9111598
  • Bagautdinova, Z.Z., Omelyanchuk, N., Tyapkin, A.V., Kovrizhnykh, V.V., Lavrekha, V.V., & Zemlyanskaya, E.V. (2022). Salicylic acid in root growth and development. International Journal of Molecular Sciences, 23 (4), 2228. https://doi.org/ 10.3390/ijms23042228
  • Barros, T.C., de Mello Prado, R., Roque, C.G., Arf, M.V., & Vilela, R.G. (2019). Silicon and salicylic acid in the physiology and yield of cotton. Journal of Plant Nutrition, 42 (5), 458-465. https://doi.org/10.1080/01904167.2019.1567765
  • Başal, H., & Ünay, A. (2006). Water stress in cotton (Gossypium hirsutum L.). Ege Üniversitesi Ziraat Fakültesi Dergisi, 43 (3), 101-111.
  • Borzouyi, Z., Armin, M., & Marvi, H. (2021). The effect of time and type of stress moderators on yield and yield components of cotton on conventional and double-cropping systems under saline conditions. Journal of Cotton Research, 4 (1), 1-15. https://doi.org/10.1186/s42397-021-00103-6
  • Cao, Z., Wang, X., & Gao, Y. (2022). Effect of plant growth regulators on cotton seedling root growth parameters and enzyme activity. Plants, 11, 2964. https:// doi.org/10.3390/plants11212964
  • Conaty, W.C., Mahan, J.R., Neilsen, J.E., Tan, D.K., Yeates, S.J., & Sutton, B.G. (2015). The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Research, 183, 329-341. https://doi.org/10.1016/j.fcr.2015.08.010
  • Culpan, E., & Arslan, B. (2018). Salisilik asit uygulamasının aspir (Carthamus tinctorius L.) çeşitlerinin verim ve bazı kalite özelliklerine etkisinin araştırılması. Akademik Ziraat Dergisi, 7 (2), 173-178. https://doi.org/10.29278/azd.476336
  • de Souza Junior, J.P., de Mello Prado, R., Soares, M.B., Silva, F.J.L., Guedes, V.H.F., Sarah, M.M.S., & Cazetta, J.O. (2021). Effect of different foliar silicon sources on cotton plants. Journal of Soil Science and Plant Nutrition, 21, 95-103. https://doi.org/10.1007/s42729-020-00345-4
  • Dong, Y.J., Wang, Z.L., Zhang, J.W., Liu, S., He, Z.L., & He, M.R. (2015). Interaction effects of nitric oxide and salicylic acid in alleviating salt stress of Gossypium hirsutum L. Journal of Soil Science and Plant Nutrition, 15 (3), 561-573. https://doi.org/10.4067/S0718-95162015005000024
  • El‐Sherif, N.A. (2022). Salicylic acid and its crosstalk with other plant hormones under stressful environments. Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects, 304-317. https://doi.org/10.1002/9781119671107.ch16
  • Ferraz, R.L.D.S., Costa, P.D.S., Magalhães, I.D., Medeiros, A.D.S., Viégas, P.R.A., & Melo, A.S.D. (2021). Physiological adjustments, fiber yield and quality of colored cotton BRS Topázio cultivar under leaf silicon spraying. Ciência e Agrotecnologia, 45, e005721. https://doi.org/10.1590/1413-7054202145005721
  • Gerik, T.J., Faver, K.L., Thaxton, P.M., & El‐Zik, K.M. (1996). Late season water stress in cotton: I. Plant growth, water use, and yield. Crop Science, 36 (4), 914-921. https://doi.org/10.2135/cropsci1996.0011183X003600040017x
  • Heidari, M., Moradi, M., Armin, M., & Amerian, M.R. (2022). Effects of foliar application of salicylic acid and calcium chloride on yield, yield components and some physiological parameters in cotton. Sustainability in Food and Agriculture, 3, 28-32. https://doi.org/10.26480/sfna.01.2022.28.32
  • Hussein, M.M., Mehanna, H., & Abou-Baker, N.H. (2012). Growth, photosynthetic pigmentsand mineral status of cotton plants as affected by salicylic acid and salt stress. Journal of Applied Sciences Research, (November), 5476-5484.
  • Jaafar, K.S., Mohammed, M.A., & Mohammed, S. M. (2021). Screening for drought tolerance in cotton (Gossypium hirsutum L.) using in vitro technique. Journal of Dryland Agriculture, 7 (4), 52-59. https://doi.org/10.5897/JODA2021.0067
  • Jam, B.J., Shekari, F., Andalibi, B., Fotovat, R., Jafarian, V., Najaf, J., Uberti, D., & Mastinu, A. (2023). Impact of silicon foliar application on the growth and physiological traits of Carthamus tinctorius L. exposed to salt stress. Silicon, 15, 1235-1245.
  • Janda, T., Gondor, O.K., Yordanova, R., Szalai, G., & Pál, M. (2014). Salicylic acid and photosynthesis: signalling and effects. Acta Physiologiae Plantarum, 36, 2537-2546. https://doi.org/10.1007/s11738-014-1620-y
  • Karademir, Ç., Karademir, E., Çopur, O., & Gençer, O. (2012). Effect of drought stress on leaf area in cotton (Gossypium hirsutum L.). 11th Meeting of Inter-Regional Cooperative Research Network on Cotton for the Mediterranean and Middle East Regions, 5-7 November, Antalya.
  • Kassem, M. (2008). Cotton response to foliar application of salicylic acid under the environmental conditions of upper Egypt. Egyptian Journal of Agricultural Research, 86 (4), 1477-1488.
  • Kaydan, D., Yağmur, M., & Okut, N. (2007). Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarım Bilimleri Dergisi, 13 (2) 114-119. https://doi.org/ 10.1501/Tarimbil_0000000444
  • Kazemi, M., Gholami, M., & Hassanvand, F. (2012). Effects of silicon on antioxidative defense system and membrane lipid peroxidation in gerbera cut flower. Asian Journal of Biochemistry, 7 (3), 171-176. https://doi.org/10.3923/ajb.2012.171.176
  • Khandaker, L., Akond, M., & Oba, S. (2011). Foliar Application of salicylic acid ımproved the growth, yield and leaf’s bioactive compounds in red amaranth (Amaranthus tricolor L.). Vegetable Crops Research Bulletin, 74, 77-86. https://doi.org/10.2478/v10032-011-0006-6
  • Kılıç, R., & Karademir, C. (2023). Effect of salicylic acid application on cotton (Gossypium hirsutum L.) yield and fibre quality. Journal of Applied Life Sciences and Environment, 56 (4) (196), 597-617. https://doi.org/10.46909/alse-564118
  • Kleier, D.A. (1988). Phloem mobility of xenobiotics: I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiology, 86 (3), 803-810. https://doi.org/10.1104/pp.86.3.803
  • Koentrojo, Y., Sukendah, S., Purwanto, E., & Purnomo, D. (2020). Stomatal behaviour of soybean under drought stress with silicon application. Annals of Agri-Bio Research, 25 (1), 103-109.
  • Kou, X., Han, W., & Kang, J. (2022). Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13, 1085409. https://doi.org. 10.3389/fpls.2022.1085409
  • Laing, M., & Adandonon, A. (2005). Silicon and insect management–review. In Proceedings of the III Silicon in Agriculture Conference (pp. 22-26).
  • Latif, F., Ullah, F., Mehmood, S., Khattak, A., Khan, A.U., Khan, S., & Husain, I. (2016). Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 66 (4), 325-332. https://doi.org/10.1080/09064710.2015.1117133
  • Liang, Y., Liu, H., Fu, Y., Li, P., Li, S., & Gao, Y. (2023). Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress. BMC Plant Biology, 23 (1), 504. https://doi.org/10.1186/s12870-023-04509-z
  • Ludlow, M.M., & Muchow, R.C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107-153. https://doi.org/10.1016/S0065-2113(08)60477-0
  • Luo, H.H., Zhang, Y.L., & Zhang, W.F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54 (1), 65-73. https://doi.org/ 10.1007/s11099-015-0165-7
  • Loka, D.A., Oosterhuis, M., & Ritchie, G.L. (2011). Water-deficit stress in cotton. pp. 37-72. In: D.M. Oosterhuis (ed.). Stress physiology in cotton. The Cotton Foundation, Memphis, Tennis.
  • Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50 (1), 11-18. https://doi.org/10.1080/00380768.2004.10408447
  • Ma, J.F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11 (8), 392-397. https://doi.org/10.1016/j.tplants.2006.06.007
  • Mahmood, T., Iqbal, M.S., Li, H., Nazir, M.F., Khalid, S., Sarfraz, Z., Hu, D., Baojun, C., Geng, X., Tajo, S.M., Dev, W., Iqbal, Z., Zhao, P., Hu, G., & Du, X. (2022). Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology, 22 (1), 331. https://doi.org/10.1186/s12870-022-03724-4
  • Malik, R.S., Dhankar, J.S., & Turner, N.C. (1979). Influence of soil water deficits on root growth of cotton seedlings. Plant and Soil, 53, 109-115.
  • Mamatha, K., & Jaybhaye, P.R. (2018). Impact of drought weather condition on bt cotton growth, development and yield. International Journal of Current Microbiology and Applied Science, 6, 2332-2338.
  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126 (5), 969-980. https://doi.org/10.1016/j.cell.2006.06.054
  • Monteoliva, M.I., Guzzo, M.C., & Posada, G.A. (2021). Breeding for drought tolerance by monitoring chlorophyll content. https://www.walshmedicalmedia.com/author/mariela-ineacutes-monteoliva-21662
  • Naz, S., Bilal, A., Saddiq, B., Ejaz, S., Ali, S., Ain Haider, S.T., Sardar, H., Nasir, B., Ahmad, I., & Tiwari, R.K., Lal, M.K., Shakoor, A., Alyemeni, M.N., Mushtaq, N., & Altaf, M.A. (2022). Foliar application of salicylic acid ımproved growth, yield, quality and photosynthesis of pea (Pisum sativum L.) by ımproving antioxidant defense mechanism under saline conditions. Sustainability, 14, 14180. https://doi.org/10.3390/su142114180
  • Ninanya, J., Ramírez, D.A., Rinza, J., Silva-Díaz, C., Cervantes, M., García, J., & Quiroz, R. (2021). Canopy temperature as a key physiological trait to ımprove yield prediction under water restrictions in potato. Agronomy, 11, 1436. https:// doi.org/10.3390/agronomy11071436
  • Omar, A.M., Menshawi, M.E., Okkiah, S.E., & EL Sabagh, A. (2018). Foliar application of organic compounds stimulate cotton (Gossypium barbadense L.) to survive late sown condition. Open Agriculture, 3, 684-697. https://doi.org/10.1515/opag-2018-0072
  • Ödemiş, B., & Kazgöz Candemir, D. (2023). The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (1), 140-149. https://doi.org/10.18016/ksutarimdoga.vi.992764
  • Pace, P.F., Cralle, H.T., El-Halawany, S.H.M., Cothren, J.T., & Senseman, S.A. (1999). Drought-induced changes in shoot and root growth of young cotton plants. Journal of Cotton Science, 3, 183-187.
  • Pettigrew, W.T. (2004). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96 (2), 377-383. https://doi.org/10.2134/agronj2004.3770
  • Raskın, I., Skubatz, H., Tang, W., & Meeuse, B.J. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66 (4), 369-373. https://doi.org/10.1093/oxfordjournals.aob.a088037
  • Rehman, T., Tabassum, B., Yousaf, S., Sarwar, G., & Qaisar, U. (2022) Consequences of drought stress encountered during seedling stage on physiology and yield of cultivated cotton. Frontiers in Plant Science, 13, 906444. https://doi.org/10.3389/fpls.2022.906444
  • Rocher, F., Chollet, J.F., Jousse, C., & Bonnemain, J.L. (2006). Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiology, 141 (4), 1684-1693. https://doi.org/10.1104/pp.106.082537
  • Saleem, M.F., Sammar Raza, M.A., Ahmad, S., Khan, I.H., & Shahid, A.M. (2016). Understanding and mitigating the impacts of drought stress in cotton-a review. Pakistan Journal of Agricultural Sciences, 53 (3). https://doi.org/10.21162/PAKJAS/16.3341
  • Samal, I., Bhoi, T.K., Mahanta, D.K., & Komal, J. (2023). Establishing the role of silicon (Si) in Plant resistance to ınsects: A bibliometric approach. Silicon, 1-10. https://doi.org/10.1007/s12633-023-02821-9
  • Santos, A.F.B. dos; Teixeira, G.C.M., Campos, C.N.S., Baio, F.H.R., de Mello Prado, R., Teodoro, L.P.R., Vilela, R.G., de Paiva Neto, V.B., & Teodoro, P.E. (2020). Silicon increases chlorophyll and photosynthesis and improves height and NDVI of cotton (Gossypium hirsutum L. r. latifolium Hutch). Research, Society and Development, 9 (7). https://doi.org/ 10.33448/rsd-v9i7.3826.
  • Sarwar, M., Saleem, M.F., Ullah, N., Rizwan, M., Ali, S., Shahid, M.R., Alamri, S.A., Alyemeni, M.N., & Ahmad, P. (2018). Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Science Report, 8, 17086. https://doi.org/10.1038/s41598-018-35420-5
  • Shahzad, S., Ali, S., Ahmad, R., Ercisli, S., & Anjum, M.A. (2022). Foliar application of silicon enhances growth, flower yield, quality and postharvest life of tuberose (Polianthes tuberosa L.) under saline conditions by ımproving antioxidant defense mechanism. Silicon, 14, 1511-1518. https://doi.org/10.1007/s12633-021-00974-z
  • Sharma, A., Bhardwaj, R., Kumar, V., Zheng, B., & Tripathi, D. K. (Eds.). (2022a). Managing plant stress using salicylic acid: physiological and molecular aspects, John Wiley & Sons. Editor(s): Sharma, A., Bhardwaj, R., Kumar, V., Zheng, B., Tripathi, D.K. https://doi.org/10.1002/9781119671107
  • Sharma, N., Sharma, V., Sharma, V., & Bhardwaj, R. (2022b). Salicylic acid: A regulator of plant growth and development. Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects, 1-15. https://doi.org/10.1002/9781119671107.ch1
  • Sonone, M.P., Rathod, T.H., & Dhage, P.S. (2020). Effect of moisture stress on total chlorophyll content of cotton. Journal of Pharmacognosy and Phytochemistry, 9 (3), 2206-2208. https://doi.org/10.22271/phyto.2020.v9.i3aj.11641
  • Tripathi, P., Subedi, S., Khan, A.L., Chung, Y.S., & Kim, Y. (2021). Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants, 10 (5), 885. https://doi.org/10.3390/plants10050885
  • Ullah, A., Sun, H., Yang, X., & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15 (3), 271-284. https://doi.org/10.1111/pbi.12688
  • Veesar, N.F., Jatoi, W.A., Gandahi, N., Aisha, G., Solangi, A.H., & Memon, S. (2020). Evaluation of cotton genotypes for drought tolerance and their correlation study at seedling stage. Biomedical Journal of Scientific & Technical Research, 29 (1), 22090-22099. https://doi.org/ 10.26717/BJSTR.2020.29.004738
  • Verdonck, O., & Gabriels, R. (1992). Reference method for the determination of physical properties of plant substrates. II. Reference method for the determination of chemical properties of plant substrates. Acta Horticulturae, 302 (10), 169-79. https://doi.org/10.17660/ActaHortic.1992.302.16
  • Vlot, A.C., Dempsey, D.M.A., & Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
  • Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., & Zhou, Z. (2016). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56 (3), 1265-1276. https://doi.org/10.2135/cropsci2015.08.0477
  • Wang, M., Wang, R., Mur, L.A.J., Ruan, J., Shen, Q., & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research, 8. https://doi.org/10.1038/s41438-021-00681-1
  • Zargar, S.M., Macha, M.A., Nazir, M., Agrawal, G.K., & Rakwal, R. (2012). Silicon: A multitalented micronutrient in OMICS perspective - An update. Current Proteomics, 9 (4), 245-254. https://doi.org/10.2174/157016412805219152
  • Zargar, S.M., Mahajan, R., Bhat, J., Nazir, M., & Deshmuck, R. (2019). Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. Biotech, 9, 73. https://doi.org/10.1007/s13205-019-1613-z
  • Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.2174/157016412805219152
  • Zhou, G., Zhou, X., Nie, Y., Bai, S.H., Zhou, L., & Shao, J., Cheng, W., Wang, J., Hu, F., & Fu, Y. (2018). Drought induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environment, 41 (11), 2589-2599. https://doi.org/ 10.1111/pce.13356
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarla Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Rukiye Kılıç 0000-0003-1515-9287

Çetin Karademir 0000-0002-6370-2427

Emine Karademir 0000-0001-6369-1572

Erken Görünüm Tarihi 3 Ağustos 2024
Yayımlanma Tarihi 12 Ağustos 2024
Gönderilme Tarihi 29 Ocak 2024
Kabul Tarihi 14 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kılıç, R., Karademir, Ç., & Karademir, E. (2024). Salisilik asit ve silisyumun normal sulama ve su stresi koşullarında erken dönem pamuk gelişimine etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(2), 534-551. https://doi.org/10.37908/mkutbd.1428057

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download