Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of mushroom compost smoke solution on germination and emergence of pepper seeds under salt stress

Yıl 2025, Sayı: Advanced Online Publication, 823 - 839

Öz

In this study, the effects of smoke solution obtained from mushroom compost waste on germination, seedling emergence, and physiological parameters of Capsicum annuum L. (hot pepper) seeds subjected to salt stress (100 mM NaCl) were investigated. The smoke solution was prepared by burning Pleurotus species mushroom compost and applied at four different concentrations [0% (control), 0.1%, 0.3% and 0.5%]. Seeds were soaked in these solutions for 24 hours, and germination and seedling emergence were evaluated. The results indicated that salt stress had a pronounced inhibitory effect on germination rate, seedling emergence, and growth. Smoke solution treatments, particularly at low concentrations (0.1–0.3%), provided partial improvements in germination and emergence rates; however, these effects were not always statistically significant. At the highest concentration (0.5%), reductions in pigment content and growth parameters were observed, suggesting potential toxic effects. Although the smoke solutions demonstrated a capacity to reduce oxidative damage caused by salt stress, as supported by MDA data, their protective role under stress conditions was limited. In conclusion, although the smoke solution exhibited some positive effects at low doses, its negative impact was more pronounced at high doses. Therefore, more comprehensive studies are needed to further elucidate the potential effects of the smoke solution on pepper plants.

Proje Numarası

2209/a-1919B012321891

Kaynakça

  • Ahmadzai, A.S., Hu, C., Zhang, C., & Li, Y. (2025). Mechanisms of anthocyanin-mediated salt stress alleviation and cellular homeostasis in plants. Plant Growth Regulation, 105, 655-673.https://doi.org/10.1007/s10725-025-01298-3
  • Aiduang, W., Jatuwong, K., Kiatsiriroat, T., Kamopas, W., Tiyayon, P., Jawana, R., Xayyavong, O., & Lumyong, S. (2025). Spent mushroom substrate-derived biochar and its applications in modern agricultural systems: An extensive overview. Life, 15 (2), 317. https://doi.org/10.3390/life15020317
  • Antala, M., Sytar, O., Rastogi, A., & Brestic, M. (2020). Potential of karrikins as novel plant growth regulators in agriculture. Plants, 9 (1), 43. https://doi.org/10.3390/plants9010043
  • Arslan, Y., Köklü, Ş., & Yakupoğlu, G. (2022). Karnabahar ve brokoli fidelerine yapılan melatonin uygulamalarının tuz stresi üzerine etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 26 (2), 181-192.
  • Anonymous. (2019a). FAOSTAT, Word Production data. Erişim tarihi: 25 Aralık 2024. http://www.fao.org/faostat/en/#data/QC
  • Anonymous. (2019b). TUİK Bitkisel Üretim İstatistikleri. Erişim tarihi: 25 Aralık 2024. https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Aslam, M.M., Khatoon, A., Jamil, M., Ur Rehman, S., & Komatsu, S. (2024). Plant-derived smoke solution: A stress alleviator in crop. Journal of Plant Growth Regulation, 43 (6), 1707-1724. https://doi.org/10.1007/s00344-023-11221-7
  • Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 198 (6), 486-498. https://doi.org/10.1078/0367-2530-00121
  • Başaran, U., Doğrusöz, M.Ç., Gülümser, E., & Mut, H. (2019). Using smoke solutions in grass pea (Lathyrus sativus L.) to improve germination and seedling growth and reduce toxic compound ODAP. Turkish Journal of Agriculture and Forestry, 43 (6), 518-526. https://doi.org/10.3906/tar-1809-66
  • Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65 (5), 1229-1240. https://doi.org/10.1093/jxb/ert375
  • Chaudhry, S., & Sidhu, G.P.S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41, 1-31. https://doi.org/10.1007/s00299-021-02769-3
  • Ellis, R.H., & Roberts, E.H. (1981). An investigation into the possible effects of ripeness and repeated threshing on barley seed longevity under six different storage environments. Annals of Botany, 48 (1), 93-96. https://www.jstor.org/stable/42754022
  • FAO. (2021). Global map of salt-affected soils. Food and Agriculture Organization of the United Nations.
  • Farooq, M., Hussain, M., Wakeel, A., & Siddique, K.H.M. (2015). Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461-481. https://doi.org/10.1007/s13593-015-0287-0
  • Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., & Trengove, R.D. (2004). A compound from smoke that promotes seed germination. Science, 305 (5686), 977-977. https://doi.org/10.1126/science.1099944
  • Flematti, G.R., Dixon, K.W., & Smith, S.M. (2015). What are karrikins and how were they ‘discovered’ by plants? BMC Biology, 13 (1), 108. https://doi.org/10.1186/s12915-015-0219-0
  • Garrido, R.M., Dayan, F.E., & Kolb, R.M. (2023). Herbicidal activity of smoke water. Agronomy, 13 (4), 975. https://doi.org/10.3390/agronomy13040975
  • Gupta, S., Hrdlička, J., Ngoroyemoto, N.K., Gučky, T., Novák, O., & Kulkarni, M.G. (2019). Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. Journal of Plant Growth Regulation, 39 (2), 338-345.
  • Hasanuzzaman, M., Hossain, M.A., da Silva, J.A.T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In B. Venkateswarlu, A. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop stress and its management: Perspectives and strategies (pp. 145-178). Springer.
  • Hasanuzzaman, M., Bhuyan, M.H.M. B., Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., & Fujita, M. (2019). Regulation of ascorbate–glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8 (9), 384. https://doi.org/10.3390/antiox8090384
  • Hayat, N., Afroz, N., Rehman, S., Bukhari, S.H., Iqbal, K., Khatoon, A., Taimur, N., Sakhi, S., Ahmad, N., Ullah, R., Ali, E.A., Bari, A., Hussain, H., & Nawaz, G. (2022). Plant-derived smoke ameliorates salt stress in wheat by enhancing expressions of stress-responsive genes and antioxidant enzymatic activity. Agronomy, 12 (1), 28. https://doi.org/10.3390/agronomy12010028
  • Hrdlička, J., Gucký, T., Novák, O., Kulkarni, M., Gupta, S., van Staden, J., & Doležal, K. (2019). Quantification of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods, 15, Article 81. https://doi.org/10.1186/s13007-019-0466-6
  • Ibrahim, M., Nawaz, S., Iqbal, K., Rehman, S., Ullah, R., Nawaz, G., Almeer, R., Sayed, A.A., & Peluso, I. (2022). Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants (Basel), 11 (10), 1379. https://doi.org/10.3390/plants11101379
  • Irik, H.A., & Bikmaz, G. (2024). Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Scientific Reports, 14, Article 6929. https://doi.org/10.1038/s41598-024-44260-1
  • ISTA (2020) – International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland.
  • Kamran, M., Melville, K.T., & Waters, M.T. (2024). Karrikin signalling: Impacts on plant development and abiotic stress tolerance. Journal of Experimental Botany, 75 (4), 1174-1186. https://doi.org/10.1093/jxb/erad476k
  • Kemeç Hürkan, Y., & Akı, C. (2024). Effects of plant-derived smoke, karrikin, and salinity stress on Prunus armeniaca cv. Şalak seeds and seedlings: A morphological, biochemical, and molecular approach. Journal of Agricultural Sciences, 30 (2), 273-283. https://doi.org/10.15832/ankutbd.1297788
  • Kulkarni, M.G., Light, M.E., & Van Staden, J. (2011). Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. South African Journal of Botany, 77 (4), 972-979. https://doi.org/10.1016/j.sajb.2011.08.006
  • Li, L., Gupta, A., Zhu, C., Xu, K., Watanabe, Y., Tanaka, M., Seki, M., Mochida, K., Kanno, Y., Seo, M., Nguyen, K.H., Tran, C.D., Chu, H.D., Yin, H., Jia, K.-P., Tran, L.-S.P., Yin, X., & Li, W. (2025). Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes. Plant Cell Reports, 44, 60. https://doi.org/10.1007/s00299-025-03175-x
  • Li, W., Nguyen, K.H., Chu, H.D., Ha, C.V., Watanabe, Y., Osakabe, Y., Leyva-González, M.A., Sato, M., Toyooka, K., Voges, L., Tanaka, M., Mostofa, M.G., Seki, M., Seo, M., Yamaguchi, S., Nelson, D.C., Tian, C., Herrera-Estrella, L., & Tran, L.-S.P. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13 (11), e1007076. https://doi.org/10.1371/journal.pgen.1007076
  • Light, M.E., Daws, M.I., & Van Staden, J. (2009). Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of Botany, 75 (1), 1-7. https://doi.org/10.1016/j.sajb.2008.10.004
  • Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592. https://doi.org/10.1042/bst0110591
  • Lu, X., & Gu, X. (2022). A review on lignin pyrolysis: Pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnology for Biofuels and Bioproducts, 15 (1), 106.
  • Mathnoom, S.N., & Al-Timmen, W.M.A. (2020). The effect of smoke water extract on endogenous phytohormones of Cucumis sativus L. seeds exposed to salt stress. Plant Cell Biotechnology and Molecular Biology, 21 (63-64), 1-11.
  • Meng, Y., Shuai, H., Luo, X., Chen, F., Zhou, W., Yang, W., & Shu, K. (2017). Karrikins: Regulators involved in phytohormone signaling networks during seed germination and seedling development. Frontiers in Plant Science, 7, Article 2021. https://doi.org/10.3389/fpls.2016.02021
  • Meng, Y., Varshney, K., Incze, N., Badics, E., Kamran, M., Davies, S.F., Oppermann, L.M.F., Magne, K., Dalmais, M., Bendahmane, A., Sibout, R., Vogel, J., Laudencia-Chingcuanco, D., Bond, C. S., Soós, V., Gutjahr, C., & Waters, M. T. (2021). KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. The Plant Journal, 109 (4), 883-902. https://doi.org/10.1111/tpj.15651
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7 (9), 405-410.
  • Mittova, V., Guy, M., Tal, M., & Volokita, M. (2004). Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐tolerant tomato species Lycopersicon pennellii. Journal of Experimental Botany, 55 (399), 1105-1113. https://doi.org/10.1093/jxb/erh113
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48 (12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Mohanavelu, A., Naganna, S.R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11 (10), 983. https://doi.org/10.3390/agriculture11100983
  • Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y.-H., Li, L., & Li, W.-J. (2024). Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11, Article 100319. https://doi.org/10.1016/j.stress.2023.100319
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nelson, D.C., Flematti, G.R., Riseborough, J.-A., Ghisalberti, E.L., Dixon, K.W., & Smith, S.M. (2010). Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107 (15), 7095-7100. https://doi.org/10.1073/pnas.0911635107
  • Othman, R., Zaifuddin, F.A.M., & Hassan, N.M. (2014). Carotenoid biosynthesis regulatory mechanisms in plants. Journal of Oleo Science, 63 (8), 753-760. https://doi.org/10.5650/jos.ess13183
  • Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60 (3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Ranal, M.A., & Santana, D.G.de. (2006). How and why to measure the germination process? Brazilian Journal of Botany, 29 (1). https://doi.org/10.1590/S0100-84042006000100002
  • Rani, M., Sharma, A., & Nain, K. (2024). Roles of karrikins in abiotic stress. In Phytohormones in abiotic stress (pp. 119-126). CRC Press.
  • Raghava, N., Raghava, R.P., Singh, L., & Srivastava, J. (2016). Role of allelopathy in sustainable agriculture—with special reference to parthenium. Plant Stress Tolerance: Physiology and Molecular Strategies, 16, 391-467. https://doi.org/10.3390/plants8020034
  • Sharma, P., & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17 (1), 35-52. https://doi.org/10.1590/S1677-04202005000100004
  • Singh, P., Choudhary, K.K., Chaudhary, N., Gupta, S., Sahu, M., Tejaswini, B., & Sarkar, S. (2022). Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Frontiers in Plant Science, 13, Article 1006617. https://doi.org/10.3389/fpls.2022.1006617
  • Subedi, B., Poudel, A., & Aryal, S. (2023). The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research, 14, 100733. https://doi.org/10.1016/j.jafr.2023.100733
  • Teshale, E. (2023). Problems associated with physical and chemical properties of vertisols and management options in agriculture: A review. Science Research, 11, 97-103.
  • Uçarlı, C. (2020). Effects of salinity on seed germination and early seedling stage. In S. Fahad, S. Saud, Y. Chen, C. Wu, & D. Wang (Eds.), Abiotic stress in plants. IntechOpen.
  • Wang, Q., An, B., Shi, H., Luo, H., & He, C. (2017). High concentration of melatonin regulates leaf development by suppressing cell proliferation and endoreduplication in Arabidopsis. International Journal of Molecular Sciences, 18 (5), 991. https://doi.org/10.3390/ijms18050991
  • Wang, Y., Zhang, C., Dong, B., Fu, J., Hu, S., & Zhao, H. (2018). Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans. Frontiers in Plant Science, 9, 1499. https://doi.org/10.3389/fpls.2018.01499
  • Zhang, J.H., Huang, W.D., Liu, Y.P., & Pan, Q.H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 47 (8), 959-970. https://doi.org/10.1111/j.1744-7909.2005.00109.x

Mantar kompostu duman solüsyonunun tuz stresi altındaki biber tohumlarında çimlenme ve çıkış üzerine etkisi

Yıl 2025, Sayı: Advanced Online Publication, 823 - 839

Öz

Bu çalışmada, mantar kompostu atığından elde edilen duman solüsyonunun tuz stresine (100 mM NaCl) maruz kalan Capsicum annuum L. (sivri biber) tohumlarının çimlenme, fide çıkışı ve fizyolojik parametreleri üzerine olan etkileri belirlenmiştir. Pleurotus türü mantar kompostu yakılarak hazırlanan duman solüsyonunun dört farklı konsantrasyonu [%0 (kontrol), %0.1, %0.3 ve %0.5] kullanılan denemede, tohumlar 24 saat süre ile bu solüsyonlarda bekletilmiş ve çimlenme ile fide çıkışı değerlendirilmiştir. Bulgular, tuz stresinin çimlenme oranı, fide çıkışı ve büyüme üzerinde baskılayıcı etkisinin belirgin olduğunu göstermiştir. Duman solüsyonu uygulamaları, özellikle düşük dozlarda (%0.1–0.3), çimlenme ve çıkış oranlarında kısmi iyileşmeler sağlamış ancak bu etkiler her zaman istatistiksel olarak anlamlı bulunmamıştır. Yüksek doz (%0.5) uygulamalarında ise pigment içeriklerinde ve büyüme parametrelerinde azalma gözlenmiş, olası toksik etkiler ima edilmiştir. Duman solüsyonlarının tuz stresine bağlı oksidatif hasarı azaltıcı etkisi MDA verileriyle desteklenmiş olsa da, stres koşullarındaki koruyucu rolü sınırlı kalmıştır. Sonuç olarak, duman solüsyonu düşük dozlarda bazı olumlu etkiler gösterse de, yüksek dozda olumsuz etkisi daha belirgindi. Bu sebeple yapılacak daha kapsamlı çalışmalarla duman solüsyonunun biber bitkisi üzerindeki olası etkilerinin detaylandırılması gerekmektedir.

Destekleyen Kurum

Tübitak 2209/a projesinden üretilmiştir.

Proje Numarası

2209/a-1919B012321891

Teşekkür

Yazarlar, bu çalışmaya 2209/A Üniversite Öğrencileri Araştırma Projeleri Destek Programı kapsamında sağladığı finansal destek için TÜBİTAK’a (Proje No: 1919B012321891) teşekkür eder.

Kaynakça

  • Ahmadzai, A.S., Hu, C., Zhang, C., & Li, Y. (2025). Mechanisms of anthocyanin-mediated salt stress alleviation and cellular homeostasis in plants. Plant Growth Regulation, 105, 655-673.https://doi.org/10.1007/s10725-025-01298-3
  • Aiduang, W., Jatuwong, K., Kiatsiriroat, T., Kamopas, W., Tiyayon, P., Jawana, R., Xayyavong, O., & Lumyong, S. (2025). Spent mushroom substrate-derived biochar and its applications in modern agricultural systems: An extensive overview. Life, 15 (2), 317. https://doi.org/10.3390/life15020317
  • Antala, M., Sytar, O., Rastogi, A., & Brestic, M. (2020). Potential of karrikins as novel plant growth regulators in agriculture. Plants, 9 (1), 43. https://doi.org/10.3390/plants9010043
  • Arslan, Y., Köklü, Ş., & Yakupoğlu, G. (2022). Karnabahar ve brokoli fidelerine yapılan melatonin uygulamalarının tuz stresi üzerine etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 26 (2), 181-192.
  • Anonymous. (2019a). FAOSTAT, Word Production data. Erişim tarihi: 25 Aralık 2024. http://www.fao.org/faostat/en/#data/QC
  • Anonymous. (2019b). TUİK Bitkisel Üretim İstatistikleri. Erişim tarihi: 25 Aralık 2024. https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Aslam, M.M., Khatoon, A., Jamil, M., Ur Rehman, S., & Komatsu, S. (2024). Plant-derived smoke solution: A stress alleviator in crop. Journal of Plant Growth Regulation, 43 (6), 1707-1724. https://doi.org/10.1007/s00344-023-11221-7
  • Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 198 (6), 486-498. https://doi.org/10.1078/0367-2530-00121
  • Başaran, U., Doğrusöz, M.Ç., Gülümser, E., & Mut, H. (2019). Using smoke solutions in grass pea (Lathyrus sativus L.) to improve germination and seedling growth and reduce toxic compound ODAP. Turkish Journal of Agriculture and Forestry, 43 (6), 518-526. https://doi.org/10.3906/tar-1809-66
  • Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65 (5), 1229-1240. https://doi.org/10.1093/jxb/ert375
  • Chaudhry, S., & Sidhu, G.P.S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41, 1-31. https://doi.org/10.1007/s00299-021-02769-3
  • Ellis, R.H., & Roberts, E.H. (1981). An investigation into the possible effects of ripeness and repeated threshing on barley seed longevity under six different storage environments. Annals of Botany, 48 (1), 93-96. https://www.jstor.org/stable/42754022
  • FAO. (2021). Global map of salt-affected soils. Food and Agriculture Organization of the United Nations.
  • Farooq, M., Hussain, M., Wakeel, A., & Siddique, K.H.M. (2015). Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461-481. https://doi.org/10.1007/s13593-015-0287-0
  • Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., & Trengove, R.D. (2004). A compound from smoke that promotes seed germination. Science, 305 (5686), 977-977. https://doi.org/10.1126/science.1099944
  • Flematti, G.R., Dixon, K.W., & Smith, S.M. (2015). What are karrikins and how were they ‘discovered’ by plants? BMC Biology, 13 (1), 108. https://doi.org/10.1186/s12915-015-0219-0
  • Garrido, R.M., Dayan, F.E., & Kolb, R.M. (2023). Herbicidal activity of smoke water. Agronomy, 13 (4), 975. https://doi.org/10.3390/agronomy13040975
  • Gupta, S., Hrdlička, J., Ngoroyemoto, N.K., Gučky, T., Novák, O., & Kulkarni, M.G. (2019). Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. Journal of Plant Growth Regulation, 39 (2), 338-345.
  • Hasanuzzaman, M., Hossain, M.A., da Silva, J.A.T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In B. Venkateswarlu, A. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop stress and its management: Perspectives and strategies (pp. 145-178). Springer.
  • Hasanuzzaman, M., Bhuyan, M.H.M. B., Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., & Fujita, M. (2019). Regulation of ascorbate–glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8 (9), 384. https://doi.org/10.3390/antiox8090384
  • Hayat, N., Afroz, N., Rehman, S., Bukhari, S.H., Iqbal, K., Khatoon, A., Taimur, N., Sakhi, S., Ahmad, N., Ullah, R., Ali, E.A., Bari, A., Hussain, H., & Nawaz, G. (2022). Plant-derived smoke ameliorates salt stress in wheat by enhancing expressions of stress-responsive genes and antioxidant enzymatic activity. Agronomy, 12 (1), 28. https://doi.org/10.3390/agronomy12010028
  • Hrdlička, J., Gucký, T., Novák, O., Kulkarni, M., Gupta, S., van Staden, J., & Doležal, K. (2019). Quantification of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods, 15, Article 81. https://doi.org/10.1186/s13007-019-0466-6
  • Ibrahim, M., Nawaz, S., Iqbal, K., Rehman, S., Ullah, R., Nawaz, G., Almeer, R., Sayed, A.A., & Peluso, I. (2022). Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants (Basel), 11 (10), 1379. https://doi.org/10.3390/plants11101379
  • Irik, H.A., & Bikmaz, G. (2024). Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Scientific Reports, 14, Article 6929. https://doi.org/10.1038/s41598-024-44260-1
  • ISTA (2020) – International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland.
  • Kamran, M., Melville, K.T., & Waters, M.T. (2024). Karrikin signalling: Impacts on plant development and abiotic stress tolerance. Journal of Experimental Botany, 75 (4), 1174-1186. https://doi.org/10.1093/jxb/erad476k
  • Kemeç Hürkan, Y., & Akı, C. (2024). Effects of plant-derived smoke, karrikin, and salinity stress on Prunus armeniaca cv. Şalak seeds and seedlings: A morphological, biochemical, and molecular approach. Journal of Agricultural Sciences, 30 (2), 273-283. https://doi.org/10.15832/ankutbd.1297788
  • Kulkarni, M.G., Light, M.E., & Van Staden, J. (2011). Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. South African Journal of Botany, 77 (4), 972-979. https://doi.org/10.1016/j.sajb.2011.08.006
  • Li, L., Gupta, A., Zhu, C., Xu, K., Watanabe, Y., Tanaka, M., Seki, M., Mochida, K., Kanno, Y., Seo, M., Nguyen, K.H., Tran, C.D., Chu, H.D., Yin, H., Jia, K.-P., Tran, L.-S.P., Yin, X., & Li, W. (2025). Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes. Plant Cell Reports, 44, 60. https://doi.org/10.1007/s00299-025-03175-x
  • Li, W., Nguyen, K.H., Chu, H.D., Ha, C.V., Watanabe, Y., Osakabe, Y., Leyva-González, M.A., Sato, M., Toyooka, K., Voges, L., Tanaka, M., Mostofa, M.G., Seki, M., Seo, M., Yamaguchi, S., Nelson, D.C., Tian, C., Herrera-Estrella, L., & Tran, L.-S.P. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13 (11), e1007076. https://doi.org/10.1371/journal.pgen.1007076
  • Light, M.E., Daws, M.I., & Van Staden, J. (2009). Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of Botany, 75 (1), 1-7. https://doi.org/10.1016/j.sajb.2008.10.004
  • Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592. https://doi.org/10.1042/bst0110591
  • Lu, X., & Gu, X. (2022). A review on lignin pyrolysis: Pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnology for Biofuels and Bioproducts, 15 (1), 106.
  • Mathnoom, S.N., & Al-Timmen, W.M.A. (2020). The effect of smoke water extract on endogenous phytohormones of Cucumis sativus L. seeds exposed to salt stress. Plant Cell Biotechnology and Molecular Biology, 21 (63-64), 1-11.
  • Meng, Y., Shuai, H., Luo, X., Chen, F., Zhou, W., Yang, W., & Shu, K. (2017). Karrikins: Regulators involved in phytohormone signaling networks during seed germination and seedling development. Frontiers in Plant Science, 7, Article 2021. https://doi.org/10.3389/fpls.2016.02021
  • Meng, Y., Varshney, K., Incze, N., Badics, E., Kamran, M., Davies, S.F., Oppermann, L.M.F., Magne, K., Dalmais, M., Bendahmane, A., Sibout, R., Vogel, J., Laudencia-Chingcuanco, D., Bond, C. S., Soós, V., Gutjahr, C., & Waters, M. T. (2021). KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. The Plant Journal, 109 (4), 883-902. https://doi.org/10.1111/tpj.15651
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7 (9), 405-410.
  • Mittova, V., Guy, M., Tal, M., & Volokita, M. (2004). Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐tolerant tomato species Lycopersicon pennellii. Journal of Experimental Botany, 55 (399), 1105-1113. https://doi.org/10.1093/jxb/erh113
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48 (12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Mohanavelu, A., Naganna, S.R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11 (10), 983. https://doi.org/10.3390/agriculture11100983
  • Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y.-H., Li, L., & Li, W.-J. (2024). Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11, Article 100319. https://doi.org/10.1016/j.stress.2023.100319
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nelson, D.C., Flematti, G.R., Riseborough, J.-A., Ghisalberti, E.L., Dixon, K.W., & Smith, S.M. (2010). Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107 (15), 7095-7100. https://doi.org/10.1073/pnas.0911635107
  • Othman, R., Zaifuddin, F.A.M., & Hassan, N.M. (2014). Carotenoid biosynthesis regulatory mechanisms in plants. Journal of Oleo Science, 63 (8), 753-760. https://doi.org/10.5650/jos.ess13183
  • Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60 (3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Ranal, M.A., & Santana, D.G.de. (2006). How and why to measure the germination process? Brazilian Journal of Botany, 29 (1). https://doi.org/10.1590/S0100-84042006000100002
  • Rani, M., Sharma, A., & Nain, K. (2024). Roles of karrikins in abiotic stress. In Phytohormones in abiotic stress (pp. 119-126). CRC Press.
  • Raghava, N., Raghava, R.P., Singh, L., & Srivastava, J. (2016). Role of allelopathy in sustainable agriculture—with special reference to parthenium. Plant Stress Tolerance: Physiology and Molecular Strategies, 16, 391-467. https://doi.org/10.3390/plants8020034
  • Sharma, P., & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17 (1), 35-52. https://doi.org/10.1590/S1677-04202005000100004
  • Singh, P., Choudhary, K.K., Chaudhary, N., Gupta, S., Sahu, M., Tejaswini, B., & Sarkar, S. (2022). Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Frontiers in Plant Science, 13, Article 1006617. https://doi.org/10.3389/fpls.2022.1006617
  • Subedi, B., Poudel, A., & Aryal, S. (2023). The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research, 14, 100733. https://doi.org/10.1016/j.jafr.2023.100733
  • Teshale, E. (2023). Problems associated with physical and chemical properties of vertisols and management options in agriculture: A review. Science Research, 11, 97-103.
  • Uçarlı, C. (2020). Effects of salinity on seed germination and early seedling stage. In S. Fahad, S. Saud, Y. Chen, C. Wu, & D. Wang (Eds.), Abiotic stress in plants. IntechOpen.
  • Wang, Q., An, B., Shi, H., Luo, H., & He, C. (2017). High concentration of melatonin regulates leaf development by suppressing cell proliferation and endoreduplication in Arabidopsis. International Journal of Molecular Sciences, 18 (5), 991. https://doi.org/10.3390/ijms18050991
  • Wang, Y., Zhang, C., Dong, B., Fu, J., Hu, S., & Zhao, H. (2018). Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans. Frontiers in Plant Science, 9, 1499. https://doi.org/10.3389/fpls.2018.01499
  • Zhang, J.H., Huang, W.D., Liu, Y.P., & Pan, Q.H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 47 (8), 959-970. https://doi.org/10.1111/j.1744-7909.2005.00109.x
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Recep Ölmez 0009-0002-7791-8255

Şebnem Köklü Ardıç 0000-0002-5769-2963

Gökçen Yakupoğlu 0000-0003-4921-0925

Proje Numarası 2209/a-1919B012321891
Gönderilme Tarihi 13 Haziran 2025
Kabul Tarihi 3 Eylül 2025
Erken Görünüm Tarihi 3 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Advanced Online Publication

Kaynak Göster

APA Ölmez, R., Köklü Ardıç, Ş., & Yakupoğlu, G. (2025). Mantar kompostu duman solüsyonunun tuz stresi altındaki biber tohumlarında çimlenme ve çıkış üzerine etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi(Advanced Online Publication), 823-839. https://doi.org/10.37908/mkutbd.1718303

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download