Araştırma Makalesi
BibTex RIS Kaynak Göster

Yemlere kestane ve mimoza tanen ekstraktı ilavesinin bazı in vitro rumen fermentasyon parametreleri üzerine etkileri

Yıl 2020, , 341 - 351, 18.12.2020
https://doi.org/10.37908/mkutbd.720879

Öz

Amaç: Bu araştırmada; mimoza ve kestane tanen ekstraktı ilavesinin rumen fermentasyonu üzerine olan etkilerinin incelenmesi amaçlanmıştr.

Yöntem ve Bulgular: Rumen sıvısına 0, 25, 50 ve 75 g/kg kuru madde (KM) dozlarında mimoza ve kestane tanen ekstraktı ilavesinin in vitro gaz üretimi, kuru madde sindirilebilirliği, mikrobiyal protein üretimi ile rumen fermentasyonu üzerine olan etkileri incelenmiştir. Rumen sıvısına 25 g/kg KM tanen ekstraktı ilavesi amonyak (NH3) hariç fermentasyon parametreleri üzerinde etkili olmamıştır (P>0.05). Buna karşın rumen sıvısına 75 g/kg KM tanen ekstraktı ilavesi yavaş bir sekilde fermentasyona uğramış kısımdan elde edilen gaz miktarı, potansiyel gaz üretimi ve rumen sıvısı parametrelerinden toplam uçucu yağ asitleri (UYA), asetik asit, butirik asit, asetik/ propiyonik asit oranı, NH3 düzeyi ile karbondioksit (CO2) ve metan (CH4) gazı üretimini önemli düzeyde azaltmıştır (P<0.01). Kestane tanen ekstrakt ilavesiyle karşılaştırıldığında mimoza tanen ekstrakt ilavesi NH3 düzeyi (P<0.01), yavaş bir sekilde fermantasyona uğramış kısımdan elde edilen gaz miktarı ile CH4 miktarıını düşürmüş (P<0.05), propiyonik asit miktarını artırmış (P<0.01), toplam UYA, isobütirik asit, kuru maddenin gerçek sindirim derecesi ile asetik/propiyonik asit oranını ise düşürme eğilimine yöneltmiştir (P>0.05).

Genel Yorum: Sonuç olarak, ruminant beslemede 50 g/kg KM’a kadar tanen ekstraktının rasyonda kullanılmasının uygun olacağı, daha yüksek dozda kullanılması durumunda rumen fermentasyonu ve yemden yararlanmayı olumsuz etkileyebileceği, mimoza tanen ekstraktının NH3 ve CH4 üretimindeki düşürücü etkisinin kestane tanen ekstraktından daha yüksek olduğu söylenebilir. 

Çalışmanın Önemi ve Etkisi: Tanenler kaynağı ve dozuna bağlı olarak, mikrobiyal fermentasyon ve rasyon sindirilebilirliğini düşürebilir. Buna karşın kestane yada mimoza tanen ruminant rasyonlarına uygun düzeylerde katıldığı zaman, ruminal fermentasyon olumsuz etkilenmeksizin CH4 ve NH3 salınımının düşürülmesine yardımcı olabilir.

Destekleyen Kurum

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Komisyonu (BAP) tarafından desteklenen

Proje Numarası

SDUBAP 4008-YL1-14’

Teşekkür

Bu çalışma Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Komisyonu (BAP) tarafından desteklenen SDUBAP 4008-YL1-14’ nolu projenin bir bölümünü içermektedir. Projeyi destekleyen SDÜBAP Komisyonu Başkanlığı’na teşekkür ederiz.

Kaynakça

  • AOAC (1990) Association of Official Analytical Chemists. Official methods of analysis. 15th ed., Vol. 1, AOAC, Washington, DC, pp. 69-79. Baba ASH, Castro FB, Ørskov ER (2002) Partitioning of energy and degradability of browse plants in vitro and the implications of blocking the effects of tannin by the addition of polyethylene glycol. Anim. Feed Sci. Technol. 95: 93–104. Bae HD, McAllister TA, Yanke J, Cheng K-J, Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 59: 2132–2138. Beauchemin KA, McGinn SM, Martinez TF, McAllister TA (2007) Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85: 1990–1996. Bento MHL, Makkar HPS, Acamovic T (2005) Effect ofmimosa tannin and pectin on microbial protein synthesis and gas production during in vitro fermentation of 15N-labelled maize shoots. Anim. Feed Sci. Technol. 123-124:365–377. Blümmel M, Makkar HPS, Becker K (1997) In vitro gas production- A technique revisied. J. Anim. Physiol. Anim. Nutr. 77: 24-34. Blümmel M, Aiple KP, Steingass H, Becker K (1999) A note on the stoichiometrical relationship of short chain fatty acid production and gas evolution in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 81: 157-167. Blümmel M, Lebzien P (2001) Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Liv. Prod. Sci. 68(2-3): 107-117. Carulla JE, Kreuzer M, Machmuller A, Hess HD (2005) Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961–970. Cieslak A, Zmora P, Pers-Kamczyc E, Stochmal A, Sadowinska A, Salem AZ, Szumacher-Strabel M (2014) Effects of two sources of tannins (Quercus L. and Vaccinium vitis idaea L.) on rumen microbial fermentation: an in vitro study. Ital. J. Anim. Sci. 13(2): 290-294. Düzgüneş O, Kesici T, Gürbüz F (1983) İstatistik Metodları, A.Ü. Yayınları, A831, Ankara. Field JA, Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of hydrolysable tannins. Water Res. 21: 367–374. Galyean M (1989) Laboratory Procedure in Animal Nutrition Research, Department of Animal and Range Sciences, New Mexico State University,USA. Getachew G, Makkar HPS, Becker K (2000) Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Brit. J. Nutr. 84: 73–83. Hassanat F, Benchaar C (2013) Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J.Sci. Food Agric. 93(2): 332-339. Hagerman AE, Butler LG (1989) Choosing appropriate methods and standards for assaying tannins. J. Chem. Ecol. 11:1535–1544. Hess HD, Tiemann TT, Noto F, Carulla JE, Kreuzer M (2006) Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser. 1293:164–167. Jayanegara A, Makkar HPS, Becker K (2009) Methane reducing properties of polyphenol containing plants simple phenols and purified tannins in in vitro gas production method, FAO-IAEA International Symposium ‘Sustainable Improvement of Animal Production and Health’, 8 to 11 June 2009, Vienna, Austria. pp 92-93. Jayanegara A, Leiber F, Kreuzer M (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96:365–375. Jayanegara A, Goel G, Makkar HP, Becker K (2015) Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60–68. Jones GA, McAllister TA, Muir AD, Cheng KJ (1994) Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 60: 1374–1378. Khiaosa-Ard R, Bryner SF, Scheeder MRL, Wettstein HR, Leiber F, Kreuzer M (2009) Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92:177–188. Krueger WK, Gutierrez-Banuelos H, Carstens GE, Min BR, Pinchak WE, Gomez RR (2010) Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed Sci. Technol. 159:1–9. Lowry JB, McSweeney CS, Palmer B (1996) Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant. Aust. J. Agric. Res. 47: 829-842. Makkar HPS, Blümmel M, Becker K (1995) In vitro effects of and interactions between tannins and saponins and the fate of tannins in the rumen. J.Sci. Food Agric. 69: 481–493. McSweeney CS, Palmer B, Bunch R, Krause DO (1999) Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. J. Appl. Environ. Microbiol. 65:3075–3083. McSweeney CS, Palmer B, McNeil DM, Krause DO (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91: 83–93. Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W (1979) The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agr. Sci. 93 (1): 217-222. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106:3-19. Min B, Wright C, Ho P (2014) The effect of phytochemical tannins containing diet on rumen fermentation characteristics and microbial diversity dynamics in goats using 16S rDNA amplicon pyrosequencing. Agric. Food Anal. Bacteriol. 4:195–211. MINITAB (1996) MINITAB Release 11 for Windows, State College, Pennsylvania, USA. Nelson KE, Pell AN, Doane PH, Giner-Chavez BI, Schofield P (1997) Chemical and biological assays to evaluate bacterial inhibition by tannins. J. Chem. Ecol. 23: 1175–1194. Nsahlai I, Fon F, Basha N (2011) The effect of tannin with and without polyethylene glycol on in vitro gas production and microbial enzyme activity. S. Afr. J. Anim. Sci. 41:337–344. Orskov ER, McDonald I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92: 499-503. Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24–37. Poncet C, R´emond D (2002) Rumen digestion and intestinal nutrient flows in sheep consuming pea seeds: the effect of extrusion or chestnut tannin addition. Anim. Res. 51:201–216. Preston TR (1995) Biological and chemical analytical methods. In: Tropical Animal Feeding: A Manual for Research Workers. (Eds Preston TR), FAO, Rome, pp. 191–264. Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 73: 1516-1528. Stewart CS (1991) The rumen bacteria. In: Rumen Microbial Metabolism and Ruminant Digestion. (Eds Jouany JP), INRA ed, Paris, France, pp. 15–26. Tabacco E, Borreani G, Crovetto GM, Galassi G, Colombo D, Cavallarin L (2006) Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage. J. Dairy Sci. 89:4736–4746. Waghorn GC, Shelton ID (1997) Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J. Agric. Sci. 128: 365–372. Van Soest PJ, Robertson JB, Lewis A (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.

Effects of chestnut and mimosa tannin extract supplementations to feeds on some in vitro rumen fermentation parameters

Yıl 2020, , 341 - 351, 18.12.2020
https://doi.org/10.37908/mkutbd.720879

Öz

Aims: The aim of this research was to study of the effects of mimosa and chestnut tannin on ruminal fermentation.

Methods and Results: The effects of inclusion of condensed tannin extract from mimosa and hydrolysed tannin from chestnut in the doses of 0, 25, 50, 75 g/kg dry matter (DM) feed into rumen fluid were investigated on in vitro ruminal fermentation characteristics, gas production, dry matter degradability and microbial protein production. The inclusion of 25 g tannin extract /kg DM into rumen fluid had no effects (P>0.05) on methane (CH4) production and fermentation parameters except for ammonia (NH3) –N concentration. The addition of 75 g tannin extract /kg DM into rumen fluid reduced (P<0.01) gas production from the insoluble fraction, potential gas production, the total volatile fatty acids (VFA), acetic acid, propionic acid, butyric acid and acetic acid/propionic acid ratio and NH3 level. Relative to chestnut tannin extract; gas production from the insoluble fraction, NH3 and CH4 concentration reduced (P<0.05), propionic acid increased (P<0.01) and tended to reduce (P>0.05) with mimosa tannin extract.

Conclusions: Chestnut or mimosa tannin extract up to 50 g/kg DM feed can be used in ruminant nutrition but but high doses of these extract may decrease the rumen function and feed efficiency. Mimosa tannin extract has a stronger influence on reduction in NH3 and CH4 production compared to chestnut tannin extract. 

Significance and Impact of the Study: Depending on the type and concentration used, tannins can reduce microbial fermentation and diet digestibility. However, when supplied at optimal concentrations in ruminant diets, chestnut or mimosa tannin extract have potential to reduce CH4 and NH3 losses without adversely affecting efficiency of ruminal fermentation.

Proje Numarası

SDUBAP 4008-YL1-14’

Kaynakça

  • AOAC (1990) Association of Official Analytical Chemists. Official methods of analysis. 15th ed., Vol. 1, AOAC, Washington, DC, pp. 69-79. Baba ASH, Castro FB, Ørskov ER (2002) Partitioning of energy and degradability of browse plants in vitro and the implications of blocking the effects of tannin by the addition of polyethylene glycol. Anim. Feed Sci. Technol. 95: 93–104. Bae HD, McAllister TA, Yanke J, Cheng K-J, Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 59: 2132–2138. Beauchemin KA, McGinn SM, Martinez TF, McAllister TA (2007) Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85: 1990–1996. Bento MHL, Makkar HPS, Acamovic T (2005) Effect ofmimosa tannin and pectin on microbial protein synthesis and gas production during in vitro fermentation of 15N-labelled maize shoots. Anim. Feed Sci. Technol. 123-124:365–377. Blümmel M, Makkar HPS, Becker K (1997) In vitro gas production- A technique revisied. J. Anim. Physiol. Anim. Nutr. 77: 24-34. Blümmel M, Aiple KP, Steingass H, Becker K (1999) A note on the stoichiometrical relationship of short chain fatty acid production and gas evolution in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 81: 157-167. Blümmel M, Lebzien P (2001) Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Liv. Prod. Sci. 68(2-3): 107-117. Carulla JE, Kreuzer M, Machmuller A, Hess HD (2005) Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961–970. Cieslak A, Zmora P, Pers-Kamczyc E, Stochmal A, Sadowinska A, Salem AZ, Szumacher-Strabel M (2014) Effects of two sources of tannins (Quercus L. and Vaccinium vitis idaea L.) on rumen microbial fermentation: an in vitro study. Ital. J. Anim. Sci. 13(2): 290-294. Düzgüneş O, Kesici T, Gürbüz F (1983) İstatistik Metodları, A.Ü. Yayınları, A831, Ankara. Field JA, Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of hydrolysable tannins. Water Res. 21: 367–374. Galyean M (1989) Laboratory Procedure in Animal Nutrition Research, Department of Animal and Range Sciences, New Mexico State University,USA. Getachew G, Makkar HPS, Becker K (2000) Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Brit. J. Nutr. 84: 73–83. Hassanat F, Benchaar C (2013) Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J.Sci. Food Agric. 93(2): 332-339. Hagerman AE, Butler LG (1989) Choosing appropriate methods and standards for assaying tannins. J. Chem. Ecol. 11:1535–1544. Hess HD, Tiemann TT, Noto F, Carulla JE, Kreuzer M (2006) Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser. 1293:164–167. Jayanegara A, Makkar HPS, Becker K (2009) Methane reducing properties of polyphenol containing plants simple phenols and purified tannins in in vitro gas production method, FAO-IAEA International Symposium ‘Sustainable Improvement of Animal Production and Health’, 8 to 11 June 2009, Vienna, Austria. pp 92-93. Jayanegara A, Leiber F, Kreuzer M (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96:365–375. Jayanegara A, Goel G, Makkar HP, Becker K (2015) Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60–68. Jones GA, McAllister TA, Muir AD, Cheng KJ (1994) Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 60: 1374–1378. Khiaosa-Ard R, Bryner SF, Scheeder MRL, Wettstein HR, Leiber F, Kreuzer M (2009) Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92:177–188. Krueger WK, Gutierrez-Banuelos H, Carstens GE, Min BR, Pinchak WE, Gomez RR (2010) Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed Sci. Technol. 159:1–9. Lowry JB, McSweeney CS, Palmer B (1996) Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant. Aust. J. Agric. Res. 47: 829-842. Makkar HPS, Blümmel M, Becker K (1995) In vitro effects of and interactions between tannins and saponins and the fate of tannins in the rumen. J.Sci. Food Agric. 69: 481–493. McSweeney CS, Palmer B, Bunch R, Krause DO (1999) Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. J. Appl. Environ. Microbiol. 65:3075–3083. McSweeney CS, Palmer B, McNeil DM, Krause DO (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91: 83–93. Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W (1979) The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agr. Sci. 93 (1): 217-222. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106:3-19. Min B, Wright C, Ho P (2014) The effect of phytochemical tannins containing diet on rumen fermentation characteristics and microbial diversity dynamics in goats using 16S rDNA amplicon pyrosequencing. Agric. Food Anal. Bacteriol. 4:195–211. MINITAB (1996) MINITAB Release 11 for Windows, State College, Pennsylvania, USA. Nelson KE, Pell AN, Doane PH, Giner-Chavez BI, Schofield P (1997) Chemical and biological assays to evaluate bacterial inhibition by tannins. J. Chem. Ecol. 23: 1175–1194. Nsahlai I, Fon F, Basha N (2011) The effect of tannin with and without polyethylene glycol on in vitro gas production and microbial enzyme activity. S. Afr. J. Anim. Sci. 41:337–344. Orskov ER, McDonald I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92: 499-503. Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24–37. Poncet C, R´emond D (2002) Rumen digestion and intestinal nutrient flows in sheep consuming pea seeds: the effect of extrusion or chestnut tannin addition. Anim. Res. 51:201–216. Preston TR (1995) Biological and chemical analytical methods. In: Tropical Animal Feeding: A Manual for Research Workers. (Eds Preston TR), FAO, Rome, pp. 191–264. Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 73: 1516-1528. Stewart CS (1991) The rumen bacteria. In: Rumen Microbial Metabolism and Ruminant Digestion. (Eds Jouany JP), INRA ed, Paris, France, pp. 15–26. Tabacco E, Borreani G, Crovetto GM, Galassi G, Colombo D, Cavallarin L (2006) Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage. J. Dairy Sci. 89:4736–4746. Waghorn GC, Shelton ID (1997) Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J. Agric. Sci. 128: 365–372. Van Soest PJ, Robertson JB, Lewis A (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mevlüt Günal 0000-0001-9229-7654

Proje Numarası SDUBAP 4008-YL1-14’
Yayımlanma Tarihi 18 Aralık 2020
Gönderilme Tarihi 15 Nisan 2020
Kabul Tarihi 15 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Günal, M. (2020). Yemlere kestane ve mimoza tanen ekstraktı ilavesinin bazı in vitro rumen fermentasyon parametreleri üzerine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(3), 341-351. https://doi.org/10.37908/mkutbd.720879

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download