Endüstriyel Biyoatık Karışımının Hidrotermal Yöntemle Birlikte Dönüşümü ve Cu2+ İyonları Adsorpsiyonuna Uygulanması
Yıl 2023,
, 33 - 39, 31.12.2023
Gülbahar Akkaya Sayğılı
,
Hasan Sayğılı
Öz
Mevcut çalışmada, fındık ve fıstık kabuklarının birlikte hidrotermal karbonizasyonu (ko-HTK) ile karbon esaslı yeni bir ürün (HPSHC) elde edildi. Fındık ve fıstık kabukları kütlece 1:1 karışma oranında karıştırılıp 220 oC sıcaklıkta 6 saat reaksiyon süresinde ko-HTK işlemine tabi tutuldu. Üretilen HPSHC’nin atomik karbon içeriği, kütle verimi, üst ısıl değer ve enerji yoğunluğu gibi fizikokimyasal karakteristikleri belirlendi. Ayrıca yüzey fonksiyonel gruplarını belirlemek için fourier transform kızılötesi spektrumu (FTIR) ve yüzey morfolojisini aydınlatmak için taramalı elektron mikroskop (SEM) görüntüleri alındı. HPSHC sulu çözeltiden bakır iyonları (Cu(II)) adsorpsiyonunda adsorplayıcı olarak kullanıldı. Adsorpsiyonun kinetik ve izoterm modellemesi yapılarak, sisteme ilişkin hız ve denge parametreleri hesaplandı. Kinetik çalışmalar, adsorpsiyonun yalancı-ikinci dereceden kinetik modeli ile uyumlu olduğunu ve izoterm çalışmaları ise Langmuir adsorpsiyon izotermine uygunluğunu gösterdi. HPSHC için maksimum Cu(II) adsorpsiyon kapasitesi (qm) 39.90 mg/g olarak hesaplandı. Ayrıca denge sabitleri kullanılarak yapılan termodinamiksel hesaplamalar sonucu, HPSHC üzerinde Cu(II) adsorpsiyonunun kendiliğinden ve endotermik bir süreç olduğu gözlemlendi.
Kaynakça
- [1] Fatimah I, Citradewi PW, Fadillah G, Sahroni I, Purwiandono G, Dong RA. Enhanced performance of magnets montmorillonite nanocomposite as adsorbent for Cu(II) by hydrothermal synthesis. J Environ Chem Eng, 9, 104968, 2021.
- [2] Sciban M, Klasnja M, Skrbic B. Adsorption of copper ions from water by modified agricultural by-products. Desalination, 229, 170-180, 2008.
- [3] Yi XF, Sun FL, Han ZH, Han FH, He JR, Ou MR, Gu JJ, Xu XP. Graphene oxide encapsulated polyvinyl alcohol / sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotox Environ. Safe, 158, 309-318, 2018.
- [4] Wang CL, Sun Q, Zhang LX, Su T, Yang YZ. Efficient removal of Cu(II) and Pb(II) from water by in situ synthesis of CS-ZIF-8 composite beads. J Environ Chem Eng, 10, 107911, 2022.
- [5] Kim HJ, Lee SJ, Park SY, Jung JH, Kim JS. Detection of Cu-II by a chemodosimeter-functionalized monolayer on mesoporous silica. Adv Mater, 20, 3229, 2008.
- [6] Jiang X, Su S, Rao JT, Li SJ, Lei T, Bai HP, Wang SX, Yang XJ. Magnetic metal-organic framework (Fe3O4@ZIF-8) composite for the efficient removal of Pb(II) and Cu(II) from water. J Environ Chem Eng, 9, 105959, 2021.
- [7] Wang SJ, Liu CC, Li GY, Sheng YJ, Sun YH, Rui HY, Zhang J, Xu JC, Jiang DZ. The triple roles of glutathione for a DNA-Cleaving DNAzyme and development of a fluorescent glutathione /Cu2+-dependent DNAzyme sensor for detection of Cu2+ in drinking water. ACS Sense, 2, 364-370, 2017.
- [8] Chitpong N, Husson SM. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol, 179, 94-103, 2017.
- [9] Shi K, Hu K, Wang S, Lau CY, Shiu KK. Structural studies of electrochemically activated glassy carbon electrode: Effects of chloride anion on the redox responses of copper deposition. Electrochim Acta, 52, 5907-5913, 2007.
- [10] Song XW, Cao YW, Bu XZ, Luo XP. Porous vaterity and cubic calcite aggregated calcium carbonate got from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process. Appl Surf Sci, 536, 147958, 2021.
- [11] Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater, 336, 146-157, 2017.
- [12] Deng JQ, Liu YQ, Liu SB, Zeng GM, Tan XF, Huang BY, Tang XJ, Wang SF, Hua Q, Side ZL. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interface Sci, 506, 355-364, 2017.
- [13] Fu HB, Wang BY, Li DT, Xue LH, Hua Y, Feng YF, Xie HF. Anaerobic fermentation treatment improved Cd2+ adsorption of different feedstocks based hydrochars. Chemosphere, 263, 127981, 2021.
- [14] Zhang X, Zhang L, Li A. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: hydrochar properties and its combustion and pyrolysis behaviors. Bioresour Technol, 294, 122113, 2019.
- [15] Zhang X, Zhang L, Li A. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and our products characterization. J. Environ. Manage, 201, 52-62, 2017.
- [16] Lagergren S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. K Sven Vetensk. Akad. Handl 24, 1-39, 1898.
- [17] Ho YS, McKay G. Sorption of Dye from Aqueous Solution by Peat. J Chem Eng, 70, 115-124, 1998.
- [18] Langmuir I, The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J Am Chem Soc, 40 (9), 1361-1403, 1918.
- [19] Freundlich HMF, Over the Adsorption in Solution. J Phys Chem, 57, 385-470, 1906.
- [20] Hoekman SK, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energ Fuel, 25, 1802-1810, 2011.
- [21] Lynam JG, Reza MT, Yan W, Vasquez VR, Coronella CJ. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Convers. Biorefin, 5, 173-181, 2015.
- [22] Putra HE, Damanhuri E, Dewi K, Pasek AD. Hydrothermal carbonization of biomass waste under low temperature condition. MATEC Web Conf, 154, 01025, 2018.
- [23] Falco C, Bacile N, Shaking MM. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbon. Green Chem, 13, 3273-3281, 2011.
- [24] Sengil IA, Ozacar M, Competitive Biosorption of Pb2+, Cu2+ and Zn2+ Ions from Aqueous Solutions onto Valonia Tannin Resin. J Hazard Mater, 1661(2-3), 488-1494, 2009.
Co-conversion of Industrial Biowaste Mixtures by Hydrothermal Method and Application to Cu2+ Adsorption
Yıl 2023,
, 33 - 39, 31.12.2023
Gülbahar Akkaya Sayğılı
,
Hasan Sayğılı
Öz
In present work, a novel carbonaceous product (HPSHC) was obtained by hydrothermal co-carbonization (co-HTC) of hazelnut and peanut shells (HS and PS). HS and PS were mixed at a mixing ratio of 1:1 by mass and subjected to co-HTC treatment at 220°C for 6 hours’ reaction time. The physicochemical characteristics of the produced HPSHC such as atomic carbon content, mass yield, higher heating value and energy density were determined. In addition, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) was taken to determine the surface functional groups and scanning electron microscopy (SEM) images were taken to highlight the surface morphology. HPSHC was utilize as a sorbent sample in copper ions (Cu(II)) adsorption. The rate and equilibrium parameters of the system were calculated by kinetic and isotherm modeling of the adsorption. Kinetic studies showed that the adsorption was consistent with the pseudo-second order kinetic model, and isotherm studies showed that it was obeyed the Langmuir model. A theoretical maximal uptake capacity (qm) was calculated 39.90 mg/g. In addition, as a result of thermodynamic calculations using equilibrium constants, it was observed that the adsorption of Cu(II) on HPSHC is a spontaneous and endothermic process.
Kaynakça
- [1] Fatimah I, Citradewi PW, Fadillah G, Sahroni I, Purwiandono G, Dong RA. Enhanced performance of magnets montmorillonite nanocomposite as adsorbent for Cu(II) by hydrothermal synthesis. J Environ Chem Eng, 9, 104968, 2021.
- [2] Sciban M, Klasnja M, Skrbic B. Adsorption of copper ions from water by modified agricultural by-products. Desalination, 229, 170-180, 2008.
- [3] Yi XF, Sun FL, Han ZH, Han FH, He JR, Ou MR, Gu JJ, Xu XP. Graphene oxide encapsulated polyvinyl alcohol / sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotox Environ. Safe, 158, 309-318, 2018.
- [4] Wang CL, Sun Q, Zhang LX, Su T, Yang YZ. Efficient removal of Cu(II) and Pb(II) from water by in situ synthesis of CS-ZIF-8 composite beads. J Environ Chem Eng, 10, 107911, 2022.
- [5] Kim HJ, Lee SJ, Park SY, Jung JH, Kim JS. Detection of Cu-II by a chemodosimeter-functionalized monolayer on mesoporous silica. Adv Mater, 20, 3229, 2008.
- [6] Jiang X, Su S, Rao JT, Li SJ, Lei T, Bai HP, Wang SX, Yang XJ. Magnetic metal-organic framework (Fe3O4@ZIF-8) composite for the efficient removal of Pb(II) and Cu(II) from water. J Environ Chem Eng, 9, 105959, 2021.
- [7] Wang SJ, Liu CC, Li GY, Sheng YJ, Sun YH, Rui HY, Zhang J, Xu JC, Jiang DZ. The triple roles of glutathione for a DNA-Cleaving DNAzyme and development of a fluorescent glutathione /Cu2+-dependent DNAzyme sensor for detection of Cu2+ in drinking water. ACS Sense, 2, 364-370, 2017.
- [8] Chitpong N, Husson SM. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol, 179, 94-103, 2017.
- [9] Shi K, Hu K, Wang S, Lau CY, Shiu KK. Structural studies of electrochemically activated glassy carbon electrode: Effects of chloride anion on the redox responses of copper deposition. Electrochim Acta, 52, 5907-5913, 2007.
- [10] Song XW, Cao YW, Bu XZ, Luo XP. Porous vaterity and cubic calcite aggregated calcium carbonate got from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process. Appl Surf Sci, 536, 147958, 2021.
- [11] Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater, 336, 146-157, 2017.
- [12] Deng JQ, Liu YQ, Liu SB, Zeng GM, Tan XF, Huang BY, Tang XJ, Wang SF, Hua Q, Side ZL. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interface Sci, 506, 355-364, 2017.
- [13] Fu HB, Wang BY, Li DT, Xue LH, Hua Y, Feng YF, Xie HF. Anaerobic fermentation treatment improved Cd2+ adsorption of different feedstocks based hydrochars. Chemosphere, 263, 127981, 2021.
- [14] Zhang X, Zhang L, Li A. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: hydrochar properties and its combustion and pyrolysis behaviors. Bioresour Technol, 294, 122113, 2019.
- [15] Zhang X, Zhang L, Li A. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and our products characterization. J. Environ. Manage, 201, 52-62, 2017.
- [16] Lagergren S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. K Sven Vetensk. Akad. Handl 24, 1-39, 1898.
- [17] Ho YS, McKay G. Sorption of Dye from Aqueous Solution by Peat. J Chem Eng, 70, 115-124, 1998.
- [18] Langmuir I, The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J Am Chem Soc, 40 (9), 1361-1403, 1918.
- [19] Freundlich HMF, Over the Adsorption in Solution. J Phys Chem, 57, 385-470, 1906.
- [20] Hoekman SK, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energ Fuel, 25, 1802-1810, 2011.
- [21] Lynam JG, Reza MT, Yan W, Vasquez VR, Coronella CJ. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Convers. Biorefin, 5, 173-181, 2015.
- [22] Putra HE, Damanhuri E, Dewi K, Pasek AD. Hydrothermal carbonization of biomass waste under low temperature condition. MATEC Web Conf, 154, 01025, 2018.
- [23] Falco C, Bacile N, Shaking MM. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbon. Green Chem, 13, 3273-3281, 2011.
- [24] Sengil IA, Ozacar M, Competitive Biosorption of Pb2+, Cu2+ and Zn2+ Ions from Aqueous Solutions onto Valonia Tannin Resin. J Hazard Mater, 1661(2-3), 488-1494, 2009.