Derleme
BibTex RIS Kaynak Göster

The Place and Importance of Drosophila melanogaster in Nutrition and Disease Modeling

Yıl 2025, Cilt: 13 Sayı: 1, 192 - 204, 30.06.2025
https://doi.org/10.18586/msufbd.1580717

Öz

The aim of this study is to introduce Drosophila melanogaster for different disciplines working in biological sciences and to present the studies in which it is used as a model organism in a meaningful whole. For this purpose, the physiological and anatomical characteristics and life cycle of the organism were made more understandable with visuals. In addition, information about other model organisms was given and compared with D. melanogaster. Disease models of D. melanogaster were mentioned and the effects of different applications on the organism were presented with the support of literature. Thus, it was seen that food intake, body composition, intestinal barrier function, microbiota, fertility, ageing and life span of D. melanogaster, which is the subject of more and more research in food and nutrition research, can be systematically determined in response to environmental and nutritional factors. On the other hand, it is understood that the organism is intensively used in metabolic diseases, circulatory and excretory system diseases, cancer and neurodegenerative diseases. As a result, it is predicted that D.melanogaster can be used as a model in health, food and nutrition studies, meaningful data can be obtained by the use of people and institutions conducting research in the field of health in our country, and it can be beneficial in terms of time and cost.

Kaynakça

  • [1] Polat M., Şahin F. İ., Terzi Y. K. Model Organisms and Systems in Life Sciences. Cumhuriyet Medical Journal, 44(1), 1-8, 2022.
  • [2] Kamareddine L., Najjar H., Sohail M. U., Abdulkader H., Al-Asmakh M. The microbiota and gut-related disorders: insights from animal models. Cells, 9(11), 2401, 2020.
  • [3] Giong H.-K., Subramanian M., Yu K., Lee J.-S. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. International Journal of Molecular Sciences, 22(16), 8465, 2021.
  • [4] Bertotto L. B., Catron T. R., Tal T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology, 76, 235-244, 2020.
  • [5] Hazır C., Bora G., Yurter H. E. Nörodejeneratif Hastalık Araştırmalarında Drosophila melanogaster Modeli. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 46(2), 237-245, 2021.
  • [6] Kayhan F., Kaymak G., Duruel H. E. E., Kızılkaya Ş. T. Biyolojik araştırmalarda zebra balığının (Danio rerio Hamilton, 1822) kullanılması ve önemi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7(2), 38-45, 2018.
  • [7] Hales K. G., Korey C. A., Larracuente A. M., Roberts D. M. Genetics on the fly: a primer on the Drosophila model system. Genetics, 201(3), 815-842, 2015.
  • [8] Yamaguchi M. & Yoshida H. Drosophila as a model organism. Drosophila models for human diseases, 1-10, 2018.
  • [9] Verheyen E. M. The power of Drosophila in modeling human disease mechanisms. Disease Models & Mechanisms, 15(3), dmm049549, 2022.
  • [10] Wangler M. F., Yamamoto S., Chao H. T., Posey J. E., Westerfield M., Postlethwait J. & Bellen H. J. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics, 207(1), 9-27, 2017.
  • [11] Cabiroğlu S. Yağ, şeker ve protein ağırlıklı beslenmenin Drosophila melanogaster’de genotoksik potansiyele etkisi.[Effect of fat, sugar and protein-headed diet on genotoxic potential in Drosophila melanogaster] (Tez Numarası: 743324) [Yüksek lisans tezi, Akdeniz Üniversitesi]. Yüksek Öğretim Kurulu Ulusal Tez Merkezi, 2022.
  • [12] Beira J. V. & Paro R. The legacy of Drosophila imaginal discs. Chromosoma, 125, 573-592, 2016.
  • [13] Flatt T. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. Genetics, 214(1), 3-48, 2020.
  • [14] Baenas N., Wagner A. E. Drosophila melanogaster as an alternative model organism in nutrigenomics. Genes & nutrition, 14, 1-11, 2019.
  • [15] Ugur B., Chen K., Bellen H. J. Drosophila tools and assays for the study of human diseases. Disease models & mechanisms, 9(3), 235-244, 2016.
  • [16] Lushchak O., Strilbytska O., Storey K. B. Gender-specific effects of pro-longevity interventions in Drosophila. Mechanisms of Ageing and Development, 209, 111754, 2023.
  • [17] Lemaitre B., Miguel-Aliaga I. The digestive tract of Drosophila melanogaster. Annual review of genetics, 47, 377-404, 2013.
  • [18] Miguel-Aliaga I., Jasper H., Lemaitre B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics, 210(2), 357-396, 2018.
  • [19] Buchon N., Osman D. All for one and one for all: regionalization of the Drosophila intestine. Insect biochemistry and molecular biology, 67, 2-8, 2015.
  • [20] Martín-Durán J. M., Hejnol A. The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC biology, 13(1), 1-20, 2015.
  • [21] Capo F., Wilson A., Di Cara F. The intestine of Drosophila melanogaster: an emerging versatile model system to study intestinal epithelial homeostasis and host-microbial interactions in humans. Microorganisms, 7(9), 336, 2019.
  • [22] Kopp Z. A., Jain U., Van Limbergen J., Stadnyk A. W. Do antimicrobial peptides and complement collaborate in the intestinal mucosa?. Frontiers in immunology, 6, 17, 2015.
  • [23] Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews Molecular cell biology, 15(1), 19-33, 2014.
  • [24] Barbara G., Barbaro M. R., Fuschi D., Palombo M., Falangone F., Cremon C. & Stanghellini V. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Frontiers in nutrition, 8, 718356, 2021.
  • [25] Mowat A. M., Agace W. W. Regional specialization within the intestinal immune system. Nature Reviews Immunology, 14(10), 667-685, 2014.
  • [26] Douglas A. E. The Drosophila model for microbiome research. Lab animal, 47(6), 157-164, 2018.
  • [27] Overend G., Luo Y., Henderson L., Douglas A. E., Davies S. A., Dow J. A. Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Scientific reports, 6(1), 1-11, 2016.
  • [28] Newell P. D., Douglas A. E. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Applied and environmental microbiology, 80(2), 788-796, 2014.
  • [29] Peterson C. T., Sharma V., Elmén L., Peterson S. N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical & Experimental Immunology, 179(3), 363-377, 2015.
  • [30] Cuevas-Sierra A., Ramos-Lopez O., Riezu-Boj J. I., Milagro F. I., Martinez J. A. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Advances in Nutrition, 10, 17-30, 2019.
  • [31] Clark R. I., Salazar A., Yamada R., Fitz-Gibbon S., Morselli M., Alcaraz J., Rana A., Rera M., Pellegrini M., Ja W. W., Walker D. W. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell reports, 12(10), 1656-1667, 2015.
  • [32] Adair K. L., Wilson M., Bost A., Douglas A. E. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. The ISME journal, 12(4), 959-972, 2018.
  • [33] Pais I. S., Valente R. S., Sporniak M., Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS biology, 16(7), e2005710, 2018.
  • [34] Musselman L. P., & Kühnlein R. P. Drosophila as a model to study obesity and metabolic disease. Journal of Experimental Biology, 221(Suppl_1), jeb163881, 2018.
  • [35] He Y., Jasper H. Studying aging in Drosophila. Methods, 68(1), 129-133, 2014.
  • [36] Gáliková M., Klepsatel P. Obesity and aging in the Drosophila model. International journal of molecular sciences, 19(7), 1896, 2018.
  • [37] Reis T. Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan. PLoS ONE, 11, e0146758, 2016.
  • [38] Galenza A., Hutchinson J., Campbell S.D., Hazes B., Foley E. Glucose modulates Drosophila longevity and immunity independent of the microbiota. Biol. 5, 165–173, 2016.
  • [39] Na J., Sweetwyne M.T., Park A.S., Susztak K., Cagan, R.L. Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. Cell Rep. 12, 636–647, 2015.
  • [40] Eickelberg V., Lüersen K., Staats S. & Rimbach G. Phenotyping of Drosophila melanogaster—A nutritional perspective. Biomolecules, 12(2), 221., 2022.
  • [41] Woodcock K.J., Kierdorf K., Pouchelon C.A., Vivancos V., Dionne M.S., Geissmann F. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity, 42, 133–144, 2015.
  • [42] Wen D.T., Zheng L., Yang F., Li H.Z., Chen J. Endurance exercise prevents high-fat-diet induced locomotor impairment, cardiac dysfunction, lifespan shortening, and dSir2 expression decline in aging Drosophila. Exp. Gerontol. 2018.
  • [43] Emran S., Yang M., He X., Zandveld J., Piper M.D. Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration. Aging, 6, 390–398, 2014.
  • [44] Katewa S.D., Demontis F., Kolipinski M., Hubbard A., Gill M.S., Perrimon N., Melov S., Kapahi P. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 16, 97–103, 2012.
  • [45] Medina A., Bellec K., Polcowñuk S., Cordero J. B. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Disease Models & Mechanisms, 15(3), dmm049332, 2022.
  • [46] Allocca M., Zola S., Bellosta P. The Fruit Fly, Drosophila melanogaster: modeling of human diseases (Part II). Drosophila melanogaster-Model for Recent Advances in Genetics and Therapeutics, 131-156, 2018.
  • [47] Alfa R. W., Kim S. K. Using Drosophila to discover mechanisms underlying type 2 diabetes. Disease models & mechanisms, 9(4), 365-376, 2016.
  • [48] Hirabayashi S. The interplay between obesity and cancer: A fly view. Disease models & mechanisms, 9(9), 917-926, 2016.
  • [49] Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a versatile model organism in food and nutrition research. J Agric Food Chem. 66:3737–53, 2018.
  • [50] Grönke S., Clarke D.-F., Broughton S., Andrews T. D., Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857, 2010.
  • [51] Güneş E. Besinler ve beslenme çalışmalarında Drosophila. KSÜ Doğa Bilimleri Dergisi, 19(3), 236-243, 2016.
  • [52] Park S., Alfa R. W., Topper S. M., Kim G. E., Kockel L., Kim, S. K. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet. 10, e1004555, 2014.
  • [53] Musselman L. P., Fink J. L., Narzinski K., Ramachandran P. V., Hathiramani S. S., Cagan R. L., Baranski T. J. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4,842-849, 2011.
  • [54] Loreto J. S., Ferreira S. A., Ardisson-Araújo D. M., Barbosa N. V. Human type 2 diabetes mellitus-associated transcriptional disturbances in a high-sugar diet long-term exposed Drosophila melanogaster. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 39, 100866, 2021.
  • [55] Beanas N, Wagner A.E. Drosophila melanogaster as a Model Organism for Obesity and Type-2 Diabetes Mellitus by Applying High-Sugar and High-Fat Diets. Biomolecules, 12(2),307, 2022.
  • [56] Diop S. B., Birse R. T. & Bodmer R. High fat diet feeding and high throughput triacylglyceride assay in Drosophila melanogaster. JoVE (Journal of Visualized Experiments), (127), e56029. 2017.
  • [57] Woodcock K. J., Kierdorf K., Pouchelon C. A., Vivancos V., Dionne M. S., Geissmann F. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42, 133-144, 2015.
  • [58] Lüersen K., Röder T., & Rimbach G. Drosophila melanogaster in nutrition research-the importance of standardizing ezperimental diets. Genes & nutrition, 14, 3, 2019.
  • [59] Gáliková M., Diesner M., Klepsatel P., Hehlert P., Xu Y., Bickmeyer I., Predel R., Kühnlein R. P. Energy homeostasis control in Drosophila Adipokinetic hormone mutants. Genetics 201, 665-683, 2015.
  • [60] Sajwan S., Sidorov R., Stašková T., Žaloudíková A., Takasu Y., Kodrík D., Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect biochemistry and molecular biology, 61, 79-86, 2015.
  • [61] Alfa R. W., Park S., Skelly K. R., Poffenberger G., Jain N., Gu X., Kockel L., Wang J., Liu Y., Powers A. C., Kim S. K. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 21, 323-333, 2015.
  • [62] Na J., Sweetwyne M. T., Park A. S. D., Susztak K., Cagan R. L. Diet-induced podocyte dysfunction in Drosophila and mammals. Cell reports, 12(4), 636-647, 2015.
  • [63] van Dam E., van Leeuwen L. A. G., Dos Santos E., James J., Best L., Lennicke C., Vincent A. J., Marinos G., Foley A., Buricova M., Mokochinski J. B., Kramer H. B., Lieb W., Laudes M., Franke A., Kaleta C., Cochemé H. M. Sugar-induced obesity and insulin resistance are uncoupled from shortened survival in Drosophila. Cell metabolism, 31(4), 710-725, 2020.
  • [64] Lubojemska A., Stefana M. I., Sorge S., Bailey A. P., Lampe L., Yoshimura A., Burrell A., Collinson L., Gould, A. P. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biology, 19(5), e3001230. 2021.
  • [65] Rani L., Saini S., Shukla N., Chowdhuri D. K., Gautam N. K. High sucrose diet induces morphological, structural and functional impairments in the renal tubules of Drosophila melanogaster: A model for studying type-2 diabetes mediated renal tubular dysfunction. Insect Biochemistry and Molecular Biology, 103441. 2020.
  • [66] Nowak K., Seisenbacher G., Hafen E., Stocker H. Nutrient restriction enhances the proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues. Elife, 2, e00380. 2013.
  • [67] Hirabayashi S., Baranski T.J., Cagan R.L. Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell, 154(3), 664-675, 2013.
  • [68] Billeter J. C., Bailly T. P. M. & Kohlmeier P. The social life of Drosophila melanogaster. Insectes sociaux, 1-14, 2024.
  • [69] Wāng Y. & Jiang Y. Drosophila melanogaster as a tractable eco-environmental model to unravel the toxicity of micro-and nanoplastics. Environment International, 192, 109012, 2024.
  • [70] Güneş E., & Şensoy E. Is Turkish coffee protects Drosophila melanogaster on cadmium acetate toxicity by promoting antioxidant enzymes?. Chemosphere, 296, 133972, 2022.
  • [71] H. N. N. Kumar, M. Raveesh, A. K. Shettar and P. Niranjana. Evaluation of Pesticide Chlorpyrifos Toxicity on Drosophila Melanogaster. International Journal of Pharmaceutical Sciences and Research, 12(4), 2271-2281, 2021.
  • [72] Güneş E. & Şensoy E. The effects of chlorpyrifos toxicity on movement physiology investigation in Drosophila melanogaster. Journal of International Environmental Application and Science, 16(4), 192-197, 2021.
  • [73] Jovanović B., Cvetković V. J. & Mitrović T. L. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere, 144, 43-49, 2016.
  • [74] Ávalos A., Haza A. I., Drosopoulou E., Mavragani-Tsipidou P. & Morales P. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food and Chemical Toxicology, 85, 114-119, 2015.
  • [75] Wang Z., Zhang L., & Wang X. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. Journal of Environmental Sciences, 125, 616-629, 2023.
  • [76] Vitolins M. Z. & Case T. L. What makes nutrition research so difficult to conduct and interpret?. Diabetes Spectrum: a Publication of the American Diabetes Association, 33(2), 113, 2020.

Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi

Yıl 2025, Cilt: 13 Sayı: 1, 192 - 204, 30.06.2025
https://doi.org/10.18586/msufbd.1580717

Öz

Bu çalışmanın amacı biyolojik bilimler çalışan farklı disiplinler için Drosophila melanogaster’in tanıtılması ve model organizma olarak kullanıldığı çalışmaların anlamlı bir bütün içerisinde sunulmasıdır. Bu amaçla organizmanın tanıtılması için fizyolojik ve anatomik özellikleriyle yaşam döngüsü görseller eşliğinde daha anlaşılır hale getirilmiştir. Ayrıca diğer model organizmalar hakkında bilgiler verilerek D. melanogaster ile mukayesesi yapılmıştır. D. melanogaster’in hastalık modellerine değinilmiş, farklı uygulamaların organizmadaki etkileri literatür desteğiyle sunulmuştur. Böylece gıda ve beslenme araştırmalarında giderek daha fazla araştırmaya konu olan D. melanogaster’in çevre ve beslenme faktörlerine yanıt olarak besin alımı, vücut kompozisyonu, bağırsak bariyer fonksiyonu, mikrobiyota, doğurganlık, yaşlanma ve yaşam süresinin sistematik olarak belirlenebileceği görülmüştür. Öte yandan metabolik hastalıklar, dolaşım ve boşaltım sistemi hastalıkları, kanser ve nörodejeneratif hastalıklar içinde organizmanın yoğun olarak kullanıldığı anlaşılmaktadır. Sonuç olarak D.melanogaster’ in sağlık, gıda ve beslenme çalışmalarında model olarak kullanılabileceği, ülkemizde sağlık alanında araştırma yapan kişi ve kurumlarca kullanımıyla anlamlı verilere ulaşılabileceği, zaman ve maliyet açısından faydalı olabileceği öngörülmektedir.

Kaynakça

  • [1] Polat M., Şahin F. İ., Terzi Y. K. Model Organisms and Systems in Life Sciences. Cumhuriyet Medical Journal, 44(1), 1-8, 2022.
  • [2] Kamareddine L., Najjar H., Sohail M. U., Abdulkader H., Al-Asmakh M. The microbiota and gut-related disorders: insights from animal models. Cells, 9(11), 2401, 2020.
  • [3] Giong H.-K., Subramanian M., Yu K., Lee J.-S. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. International Journal of Molecular Sciences, 22(16), 8465, 2021.
  • [4] Bertotto L. B., Catron T. R., Tal T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology, 76, 235-244, 2020.
  • [5] Hazır C., Bora G., Yurter H. E. Nörodejeneratif Hastalık Araştırmalarında Drosophila melanogaster Modeli. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 46(2), 237-245, 2021.
  • [6] Kayhan F., Kaymak G., Duruel H. E. E., Kızılkaya Ş. T. Biyolojik araştırmalarda zebra balığının (Danio rerio Hamilton, 1822) kullanılması ve önemi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7(2), 38-45, 2018.
  • [7] Hales K. G., Korey C. A., Larracuente A. M., Roberts D. M. Genetics on the fly: a primer on the Drosophila model system. Genetics, 201(3), 815-842, 2015.
  • [8] Yamaguchi M. & Yoshida H. Drosophila as a model organism. Drosophila models for human diseases, 1-10, 2018.
  • [9] Verheyen E. M. The power of Drosophila in modeling human disease mechanisms. Disease Models & Mechanisms, 15(3), dmm049549, 2022.
  • [10] Wangler M. F., Yamamoto S., Chao H. T., Posey J. E., Westerfield M., Postlethwait J. & Bellen H. J. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics, 207(1), 9-27, 2017.
  • [11] Cabiroğlu S. Yağ, şeker ve protein ağırlıklı beslenmenin Drosophila melanogaster’de genotoksik potansiyele etkisi.[Effect of fat, sugar and protein-headed diet on genotoxic potential in Drosophila melanogaster] (Tez Numarası: 743324) [Yüksek lisans tezi, Akdeniz Üniversitesi]. Yüksek Öğretim Kurulu Ulusal Tez Merkezi, 2022.
  • [12] Beira J. V. & Paro R. The legacy of Drosophila imaginal discs. Chromosoma, 125, 573-592, 2016.
  • [13] Flatt T. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. Genetics, 214(1), 3-48, 2020.
  • [14] Baenas N., Wagner A. E. Drosophila melanogaster as an alternative model organism in nutrigenomics. Genes & nutrition, 14, 1-11, 2019.
  • [15] Ugur B., Chen K., Bellen H. J. Drosophila tools and assays for the study of human diseases. Disease models & mechanisms, 9(3), 235-244, 2016.
  • [16] Lushchak O., Strilbytska O., Storey K. B. Gender-specific effects of pro-longevity interventions in Drosophila. Mechanisms of Ageing and Development, 209, 111754, 2023.
  • [17] Lemaitre B., Miguel-Aliaga I. The digestive tract of Drosophila melanogaster. Annual review of genetics, 47, 377-404, 2013.
  • [18] Miguel-Aliaga I., Jasper H., Lemaitre B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics, 210(2), 357-396, 2018.
  • [19] Buchon N., Osman D. All for one and one for all: regionalization of the Drosophila intestine. Insect biochemistry and molecular biology, 67, 2-8, 2015.
  • [20] Martín-Durán J. M., Hejnol A. The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC biology, 13(1), 1-20, 2015.
  • [21] Capo F., Wilson A., Di Cara F. The intestine of Drosophila melanogaster: an emerging versatile model system to study intestinal epithelial homeostasis and host-microbial interactions in humans. Microorganisms, 7(9), 336, 2019.
  • [22] Kopp Z. A., Jain U., Van Limbergen J., Stadnyk A. W. Do antimicrobial peptides and complement collaborate in the intestinal mucosa?. Frontiers in immunology, 6, 17, 2015.
  • [23] Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews Molecular cell biology, 15(1), 19-33, 2014.
  • [24] Barbara G., Barbaro M. R., Fuschi D., Palombo M., Falangone F., Cremon C. & Stanghellini V. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Frontiers in nutrition, 8, 718356, 2021.
  • [25] Mowat A. M., Agace W. W. Regional specialization within the intestinal immune system. Nature Reviews Immunology, 14(10), 667-685, 2014.
  • [26] Douglas A. E. The Drosophila model for microbiome research. Lab animal, 47(6), 157-164, 2018.
  • [27] Overend G., Luo Y., Henderson L., Douglas A. E., Davies S. A., Dow J. A. Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Scientific reports, 6(1), 1-11, 2016.
  • [28] Newell P. D., Douglas A. E. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Applied and environmental microbiology, 80(2), 788-796, 2014.
  • [29] Peterson C. T., Sharma V., Elmén L., Peterson S. N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical & Experimental Immunology, 179(3), 363-377, 2015.
  • [30] Cuevas-Sierra A., Ramos-Lopez O., Riezu-Boj J. I., Milagro F. I., Martinez J. A. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Advances in Nutrition, 10, 17-30, 2019.
  • [31] Clark R. I., Salazar A., Yamada R., Fitz-Gibbon S., Morselli M., Alcaraz J., Rana A., Rera M., Pellegrini M., Ja W. W., Walker D. W. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell reports, 12(10), 1656-1667, 2015.
  • [32] Adair K. L., Wilson M., Bost A., Douglas A. E. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. The ISME journal, 12(4), 959-972, 2018.
  • [33] Pais I. S., Valente R. S., Sporniak M., Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS biology, 16(7), e2005710, 2018.
  • [34] Musselman L. P., & Kühnlein R. P. Drosophila as a model to study obesity and metabolic disease. Journal of Experimental Biology, 221(Suppl_1), jeb163881, 2018.
  • [35] He Y., Jasper H. Studying aging in Drosophila. Methods, 68(1), 129-133, 2014.
  • [36] Gáliková M., Klepsatel P. Obesity and aging in the Drosophila model. International journal of molecular sciences, 19(7), 1896, 2018.
  • [37] Reis T. Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan. PLoS ONE, 11, e0146758, 2016.
  • [38] Galenza A., Hutchinson J., Campbell S.D., Hazes B., Foley E. Glucose modulates Drosophila longevity and immunity independent of the microbiota. Biol. 5, 165–173, 2016.
  • [39] Na J., Sweetwyne M.T., Park A.S., Susztak K., Cagan, R.L. Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. Cell Rep. 12, 636–647, 2015.
  • [40] Eickelberg V., Lüersen K., Staats S. & Rimbach G. Phenotyping of Drosophila melanogaster—A nutritional perspective. Biomolecules, 12(2), 221., 2022.
  • [41] Woodcock K.J., Kierdorf K., Pouchelon C.A., Vivancos V., Dionne M.S., Geissmann F. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity, 42, 133–144, 2015.
  • [42] Wen D.T., Zheng L., Yang F., Li H.Z., Chen J. Endurance exercise prevents high-fat-diet induced locomotor impairment, cardiac dysfunction, lifespan shortening, and dSir2 expression decline in aging Drosophila. Exp. Gerontol. 2018.
  • [43] Emran S., Yang M., He X., Zandveld J., Piper M.D. Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration. Aging, 6, 390–398, 2014.
  • [44] Katewa S.D., Demontis F., Kolipinski M., Hubbard A., Gill M.S., Perrimon N., Melov S., Kapahi P. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 16, 97–103, 2012.
  • [45] Medina A., Bellec K., Polcowñuk S., Cordero J. B. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Disease Models & Mechanisms, 15(3), dmm049332, 2022.
  • [46] Allocca M., Zola S., Bellosta P. The Fruit Fly, Drosophila melanogaster: modeling of human diseases (Part II). Drosophila melanogaster-Model for Recent Advances in Genetics and Therapeutics, 131-156, 2018.
  • [47] Alfa R. W., Kim S. K. Using Drosophila to discover mechanisms underlying type 2 diabetes. Disease models & mechanisms, 9(4), 365-376, 2016.
  • [48] Hirabayashi S. The interplay between obesity and cancer: A fly view. Disease models & mechanisms, 9(9), 917-926, 2016.
  • [49] Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a versatile model organism in food and nutrition research. J Agric Food Chem. 66:3737–53, 2018.
  • [50] Grönke S., Clarke D.-F., Broughton S., Andrews T. D., Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857, 2010.
  • [51] Güneş E. Besinler ve beslenme çalışmalarında Drosophila. KSÜ Doğa Bilimleri Dergisi, 19(3), 236-243, 2016.
  • [52] Park S., Alfa R. W., Topper S. M., Kim G. E., Kockel L., Kim, S. K. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet. 10, e1004555, 2014.
  • [53] Musselman L. P., Fink J. L., Narzinski K., Ramachandran P. V., Hathiramani S. S., Cagan R. L., Baranski T. J. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4,842-849, 2011.
  • [54] Loreto J. S., Ferreira S. A., Ardisson-Araújo D. M., Barbosa N. V. Human type 2 diabetes mellitus-associated transcriptional disturbances in a high-sugar diet long-term exposed Drosophila melanogaster. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 39, 100866, 2021.
  • [55] Beanas N, Wagner A.E. Drosophila melanogaster as a Model Organism for Obesity and Type-2 Diabetes Mellitus by Applying High-Sugar and High-Fat Diets. Biomolecules, 12(2),307, 2022.
  • [56] Diop S. B., Birse R. T. & Bodmer R. High fat diet feeding and high throughput triacylglyceride assay in Drosophila melanogaster. JoVE (Journal of Visualized Experiments), (127), e56029. 2017.
  • [57] Woodcock K. J., Kierdorf K., Pouchelon C. A., Vivancos V., Dionne M. S., Geissmann F. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42, 133-144, 2015.
  • [58] Lüersen K., Röder T., & Rimbach G. Drosophila melanogaster in nutrition research-the importance of standardizing ezperimental diets. Genes & nutrition, 14, 3, 2019.
  • [59] Gáliková M., Diesner M., Klepsatel P., Hehlert P., Xu Y., Bickmeyer I., Predel R., Kühnlein R. P. Energy homeostasis control in Drosophila Adipokinetic hormone mutants. Genetics 201, 665-683, 2015.
  • [60] Sajwan S., Sidorov R., Stašková T., Žaloudíková A., Takasu Y., Kodrík D., Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect biochemistry and molecular biology, 61, 79-86, 2015.
  • [61] Alfa R. W., Park S., Skelly K. R., Poffenberger G., Jain N., Gu X., Kockel L., Wang J., Liu Y., Powers A. C., Kim S. K. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 21, 323-333, 2015.
  • [62] Na J., Sweetwyne M. T., Park A. S. D., Susztak K., Cagan R. L. Diet-induced podocyte dysfunction in Drosophila and mammals. Cell reports, 12(4), 636-647, 2015.
  • [63] van Dam E., van Leeuwen L. A. G., Dos Santos E., James J., Best L., Lennicke C., Vincent A. J., Marinos G., Foley A., Buricova M., Mokochinski J. B., Kramer H. B., Lieb W., Laudes M., Franke A., Kaleta C., Cochemé H. M. Sugar-induced obesity and insulin resistance are uncoupled from shortened survival in Drosophila. Cell metabolism, 31(4), 710-725, 2020.
  • [64] Lubojemska A., Stefana M. I., Sorge S., Bailey A. P., Lampe L., Yoshimura A., Burrell A., Collinson L., Gould, A. P. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biology, 19(5), e3001230. 2021.
  • [65] Rani L., Saini S., Shukla N., Chowdhuri D. K., Gautam N. K. High sucrose diet induces morphological, structural and functional impairments in the renal tubules of Drosophila melanogaster: A model for studying type-2 diabetes mediated renal tubular dysfunction. Insect Biochemistry and Molecular Biology, 103441. 2020.
  • [66] Nowak K., Seisenbacher G., Hafen E., Stocker H. Nutrient restriction enhances the proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues. Elife, 2, e00380. 2013.
  • [67] Hirabayashi S., Baranski T.J., Cagan R.L. Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell, 154(3), 664-675, 2013.
  • [68] Billeter J. C., Bailly T. P. M. & Kohlmeier P. The social life of Drosophila melanogaster. Insectes sociaux, 1-14, 2024.
  • [69] Wāng Y. & Jiang Y. Drosophila melanogaster as a tractable eco-environmental model to unravel the toxicity of micro-and nanoplastics. Environment International, 192, 109012, 2024.
  • [70] Güneş E., & Şensoy E. Is Turkish coffee protects Drosophila melanogaster on cadmium acetate toxicity by promoting antioxidant enzymes?. Chemosphere, 296, 133972, 2022.
  • [71] H. N. N. Kumar, M. Raveesh, A. K. Shettar and P. Niranjana. Evaluation of Pesticide Chlorpyrifos Toxicity on Drosophila Melanogaster. International Journal of Pharmaceutical Sciences and Research, 12(4), 2271-2281, 2021.
  • [72] Güneş E. & Şensoy E. The effects of chlorpyrifos toxicity on movement physiology investigation in Drosophila melanogaster. Journal of International Environmental Application and Science, 16(4), 192-197, 2021.
  • [73] Jovanović B., Cvetković V. J. & Mitrović T. L. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere, 144, 43-49, 2016.
  • [74] Ávalos A., Haza A. I., Drosopoulou E., Mavragani-Tsipidou P. & Morales P. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food and Chemical Toxicology, 85, 114-119, 2015.
  • [75] Wang Z., Zhang L., & Wang X. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. Journal of Environmental Sciences, 125, 616-629, 2023.
  • [76] Vitolins M. Z. & Case T. L. What makes nutrition research so difficult to conduct and interpret?. Diabetes Spectrum: a Publication of the American Diabetes Association, 33(2), 113, 2020.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme Bilimi, Beslenme ve Diyetetik (Diğer)
Bölüm Derleme Makale
Yazarlar

Selinay Taysi 0009-0006-9307-7796

Bülent Çetin 0000-0002-4679-2555

Erken Görünüm Tarihi 24 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 6 Kasım 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Taysi, S., & Çetin, B. (2025). Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi. Mus Alparslan University Journal of Science, 13(1), 192-204. https://doi.org/10.18586/msufbd.1580717
AMA Taysi S, Çetin B. Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi. MAUN Fen Bil. Dergi. Haziran 2025;13(1):192-204. doi:10.18586/msufbd.1580717
Chicago Taysi, Selinay, ve Bülent Çetin. “Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi”. Mus Alparslan University Journal of Science 13, sy. 1 (Haziran 2025): 192-204. https://doi.org/10.18586/msufbd.1580717.
EndNote Taysi S, Çetin B (01 Haziran 2025) Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi. Mus Alparslan University Journal of Science 13 1 192–204.
IEEE S. Taysi ve B. Çetin, “Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi”, MAUN Fen Bil. Dergi., c. 13, sy. 1, ss. 192–204, 2025, doi: 10.18586/msufbd.1580717.
ISNAD Taysi, Selinay - Çetin, Bülent. “Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi”. Mus Alparslan University Journal of Science 13/1 (Haziran2025), 192-204. https://doi.org/10.18586/msufbd.1580717.
JAMA Taysi S, Çetin B. Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi. MAUN Fen Bil. Dergi. 2025;13:192–204.
MLA Taysi, Selinay ve Bülent Çetin. “Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi”. Mus Alparslan University Journal of Science, c. 13, sy. 1, 2025, ss. 192-04, doi:10.18586/msufbd.1580717.
Vancouver Taysi S, Çetin B. Beslenme ve Hastalık Modellemelerinde Drosophila melanogaster’in Yeri ve Önemi. MAUN Fen Bil. Dergi. 2025;13(1):192-204.