Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALYSIS OF PHENOLIC COMPOUNDS, VOLATILE COMPONENTS, AND EVALUATION OF ANTIOXIDANT CAPACITY IN THE AERIAL PARTS OF GLAUCIUM FLAVUM PLANT

Yıl 2025, Cilt: 13 Sayı: 1, 115 - 127, 30.06.2025
https://doi.org/10.18586/msufbd.1681215

Öz

In this study, the phytochemical composition and antioxidant properties of the aerial parts of Glaucium flavum were investigated. As a result of HPLC-DAD and SPME-GC-MS analyses, benzaldehyde (37.47%) and 1-hexanal-2-ethyl (33.87%) were detected in high amounts among volatile compounds, while pyrogallol (3089.23 mg/kg) and caffeic acid (384.06 mg/kg) were prevalent among phenolic compounds, and rutin (16000 mg/kg) and catechin (649.58 mg/kg) were identified in significant quantities among flavonoids. Additionally, the ascorbic acid content of the plant was determined to be 1078.17 mg/kg. The total phenolic content was measured as 13.84±0.46 mg GAE/g, and the total flavonoid content as 7.65±0.22 mg QE/g, while FRAP (10.98±0.22 µmol Fe²⁺/g) and CUPRAC (0.11±0.01 mmol TEAC/g) tests confirmed strong antioxidant potential. The findings indicate that Glaucium flavum could be a valuable resource in pharmacological studies due to its rich phytochemical content and antioxidant activity.

Kaynakça

  • [1]. N. Kumar, V. Pruthi Potential applications of ferulic acid from natural sources Biotechnology Reports, 4 (2014), pp. 86-93
  • [2]. K.H. Kwon, A. Barve, S. Yu, M.T. Huang, A.N. Kong Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models Acta Pharmacologica Sinica, 28 (2007), pp. 1409-1421
  • [3] Moore, M. Yousef, E. Tsiani Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols Nutrients, 8 (2016)
  • [4] Trivellini, M. Lucchesini, R. Maggini, H. Mosadegh, T.S.S. Villamarin, P. Vernieri, A. Mensuali Sodi, A. Pardossi Lamiaceae phenols as multifaceted compounds:bioactivity, industrial prospects and role of positive-stress Industrial Crops and Products, 83 (2016), pp. 241-254
  • [5]Y. Sakihama, M.F. Cohen, S.C. Grace, H. Yamasaki Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants Toxicology, 177 (2002), pp. 67-80
  • [6]…..W. Watjen, G. Michels, B. Steffan, P. Niering, Y. Chovolou, A. Kampkotter, Q.H. TranThi, P.Proksch, R. Kahl Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis The Journal of Nutrition, 135 (2005), pp. 525-531
  • [7] Ajila, C. M.; Brar, S. K.; Verma, M.; Tyagi, R. D.; Godbout, S.; Valéro, J. R. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31 (3), 227–249.
  • [8] Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrit. Rev. 1998, 56, 317–333.
  • [9] Carvalho, L. M.; Martini, M.; Moreira, A. P. L.; de Lima, A. P.; Correia, D.; Falcão, T.; Garcia, S. C.; de Bairros, A. V.; do Nascimento, P. C.; Bohrer, D. Presence of Synthetic Pharmaceuticals as Adulterants in Slimming Phytotherapeutic Formulations and Their Analytical Determination. Forensic Sci. Int. 2010, 204, 6–11.
  • [10] Carvalho, L. M. de; Moreira, A. P.; Martini, M.; Falcão, T. The Illegal Use of Synthetic Pharmaceuticals in Herbal Formulations: An Overview on the Adulteration Practice and Analytical Investigations. Forensic Sci. Rev. 2011, 23, 73–90.
  • [11] Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process. 2011, 89, 217–233.
  • [12] Maciel, M. A. M.; Pinto, A. C.; Veiga Jr., V. F.; Grynberg, N. F.; Echevarria, A. Plantas Medicinais: A Necessidade de Estudos Multidisciplinares. Quím. Nova 2002, 25 (3), 429–438.
  • [13] Balasundra, N.; Sundram, K.; Samman, S. 2006. Phenolic Compounds in Plants and Agro-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203.
  • [14] Stalikas, C. D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295.
  • [15] Casella, I. G.; Colonna, C.; Contursi, M. Electroanalytical Determination of Some Phenolic Acids by High-performance Liquid Chromatography at Gold Electrodes. Electroanalysis 2007, 19 (14), 1503–1508.
  • [16] Gotti, R. Capillary Electrophoresis of Phytochemical Substances in Herbal Drugs and Medicinal Plants. J. Pharm. Biomed. Anal. 2011, 55, 775–801
  • [17] Argyropoulos, D., Müller, J., 2014. Effect of convective-, vacuum- and freeze dryingon sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants 1,59–69.
  • [18] Kumar, V., Chauhan, R.S., Sood, H., Tandon, C., 2015. Cost effective quantification ofpicrosides in Picrorhiza kurroa by employing response surface methodologyusing HPLC-UV. Journal of Plant Biochemistry and Biotechnology 24, 376–384.
  • [19] Kumar, V., Sood, H., Chauhan, R.S., 2016. Optimization of a preparative RP-HPLCmethod for isolation and purification of picrosides in Picrorhiza kurroa. Journalof Plant Biochemistry and Biotechnology 25, 208–214.
  • [20] Ray, A., Dutta Gupta, S., Ghosh, S., 2013. Isolation and characterization of potentbioactive fraction with antioxidant and UV absorbing activity from Aloebarbadensis Miller gel. Journal of Plant Biochemistry and Biotechnology 22,483–487.
  • [21] Irakli, M.N., Samanidou, V.F., Biliaderis, C.G., Papadoyannis, I.N., 2012.Simultaneous determination of phenolic acids and flavonoids in rice usingsolid-phase extraction and RP-HPLC with photodiode array detection. Journalof Separation Science 35, 1603–1611.
  • [22] Shan, B., Cai, Y.Z., Sun, M., Corke, H., 2005. Antioxidant capacity of 26 spice extractsand characterization of their phenolic constituents. Journal of Agricultural andFood Chemistry 53, 7749–7759.
  • [23] Saito, S.T., Welzel, A., Suyenaga, E.S., Bueno, F., 2006. A method for fastdetermination of epigallocatechin gallate (EGCG) epicatechin (EC), catechin (C)and caffeine (CAF) in green tea using HPLC. Food Science and Technology(Campinas) 26, 394–400.
  • [24] Cantalapiedra, A., Gismera, M.J., Sevilla, M.T., Procopio, J.R., 2014. Sensitive andselective determination of phenolic compounds from aromatic plants using anelectrochemical detection coupled with HPLC method. Phytochemical Analysis25, 247–254.
  • [25] Barrajon-Catalan, E., Fernandez-Arroyo, S., Roldan, C., Guillen, E., Saura, D.,Segura-Carretero, A., Micol, V., 2011. A systematic study of the polyphenoliccomposition of aqueous extracts deriving from several Cistus genus species:evolutionary relationship. Phytochemical Analysis 22, 303–312.
  • [26] Harris, C.S., Burt, A.J., Saleem, A., Le, P.M., Martineau, L.C., Haddad, P.S., Bennett,S.A., Arnason, J.T., 2007. A single HPLC-PAD-APCI/MS method for thequantitative comparison of phenolic compounds found in leaf stem, root andfruit extracts of Vaccinium angustifolium. Phytochemical Analysis 18, 161–169.
  • [27] Kalili, K.M., de Villiers, A., 2011. Recent developments in the HPLC separation ofphenolic compounds. Journal of Separation Science 34, 854–876.
  • [28] Ribas-Agusti, A., Gratacos-Cubarsi, M., Sarraga, C., Garcia-Regueiro, J.A., Castellari,M., 2011. Analysis of eleven phenolic compounds including novel p-coumaroylderivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquidchromatography with photodiode array and mass spectrometry detection.Phytochemical Analysis 22, 555–563.
  • [29] Rodriguez-Solana, R., Salgado, J.M., Dominguez, J.M., Cortes-Dieguez, S., 2015.Comparison of Soxhlet, accelerated solvent and supercritical fluid extractiontechniques for volatile (GC–MS and GC/FID) and phenolic compounds(HPLC-ESI/MS/MS) from Lamiaceae species. Phytochemical Analysis 26, 61–71
  • [30] Stalikas, C.D., 2007. Extraction separation, and detection methods for phenolicacids and flavonoids. Journal of Separation Science 30, 3268–3295.
  • [31] Rambla, J.L.; Trapero-Mozos, A.; Diretto, G.; Rubio-Moraga, A.; Granell, A.; Gómez-Gómez, L.; Ahrazem, O. Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
  • [32] Zhang, J.; Zhao, J.; Xu, Y.; Liang, J.; Chang, P.; Yan, F.; Li, M.; Liang, Y.; Zou, Z. Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor. Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
  • [33] Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [PubMed]
  • [34] Ma, X.-W.; Su, M.-Q.; Wu, H.-X.; Zhou, Y.-G.; Wang, S.-B. Analysis of the Volatile Profile of Core Chinese Mango Germplasm by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Molecules 2018, 23, 1480. [Google Scholar] [CrossRef] [PubMed]
  • [35] Marsili, R. Flavor, Fragrance, and Odor Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
  • [36] Van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  • [37] Yang, S.; Fresnedo-Ramírez, J.; Wang, M.; Cote, L.; Schweitzer, P.; Barba, P.; Takacs, E.M.; Clark, M.; Luby, J.; Manns, D.C.; et al. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: A case study for marker-assisted selection in grapevine. Hortic. Res. 2016, 3, 16002. [Google Scholar] [CrossRef] [PubMed]
  • [38] Chaparro-Torres, L.A.; Bueso, M.C.; Fernández-Trujillo, J.P. Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. J. Sci. Food Agric. 2016, 96, 2352–2365. [Google Scholar] [CrossRef] [PubMed]
  • [39] Obando-Ulloa, J.M.; Ruiz, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chem. 2010, 118, 815–822. [Google Scholar] [CrossRef]
  • [40] Dunemann, F.; Ulrich, D.; Boudichevskaia, A.; Grafe, C.; Weber, W.E. QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny “Discovery” × “Prima”. Mol. Breed. 2009, 23, 501–521. [Google Scholar] [CrossRef]
  • [41] Vogt, J.; Schiller, D.; Ulrich, D.; Schwab, W.; Dunemann, F. Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica). Tree Genet. Genomes 2013, 9, 1493–1511. [Google Scholar] [CrossRef]
  • [42] Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Grando, M.S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 2009, 118, 653–669. [Google Scholar] [CrossRef] [PubMed]
  • [43] Doligez, A.; Audiot, E.; Baumes, R.; This, P. QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol. Breed. 2006, 18, 109–125. [Google Scholar] [CrossRef]
  • [44] Guillaumie, S.; Ilg, A.; Réty, S.; Brette, M.; Trossat-Magnin, C.; Decroocq, S.; Léon, C.; Keime, C.; Ye, T.; Baltenweck-Guyot, R.; et al. Genetic Analysis of the Biosynthesis of 2-Methoxy-3-Isobutylpyrazine, a Major Grape-Derived Aroma Compound Impacting Wine Quality. Source Plant Physiol. 2013, 162, 604–615. [Google Scholar] [CrossRef] [PubMed]
  • [45] Bezman, Y.; Mayer, F.; Takeoka, G.R.; Buttery, R.G.; Ben-oliel, G.; Rabinowitch, H.D.; Naim, M. Differential effects of tomato (Lycopersicon esculentum Mill) matrix on the volatility of important aroma compounds. J. Agric. Food Chem. 2003, 51, 722–726. [Google Scholar] [CrossRef] [PubMed]
  • [46] Vandendriessche, T.; Nicolai, B.M.; Hertog, M.L.A.T.M. Optimization of HS SPME Fast GC-MS for High-Throughput Analysis of Strawberry Aroma. Food Anal. Methods 2013, 6, 512–520. [Google Scholar] [CrossRef]
  • [47] García-Vico, L.; Belaj, A.; Sánchez-Ortiz, A.; Martínez-Rivas, J.M.; Pérez, A.G.; Sanz, C. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [PubMed
  • [48] Rappé G (1984) The distribution of some lesser known thalassochorous plant species along the Belgian coast, compared with their distribution in Western Europe. Biol Jaarb 52:35–56
  • [49] Solås HF, Stabbetoro OE, Nordal I (2007) The viability of a plant “on the edge”: Glaucium flavum (Papaveraceae) in Norway. Nord J Bot 24:433–444
  • [50] Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Syst 24:217–242
  • [51] Oostermeijer JGB (1996) Population size, genetic variation, and related parameters in small, isolated plant populations: a case study. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. The GeoJournal Library 35, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 61–68
  • [52] Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation in plants. Trends Ecol Evol 11(413):418
  • [53] Tawaha K, Alali F, Gharaibeh M, Mohammad M, El-Elimat T (2007) Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 104:1372–1378
  • [54] Arafa AM, Mohamed MES, Eldahmy SI (2016) The aerial parts of yellow horn poppy (Glaucium flavum cr.) growing in Egypt: isoquinoline alkaloids and biological activities. J Pharm Sci Res 8 (5):323–332
  • [55] Bournine L, Bensalem S, Wauters J-N, Iguer-Ouada M, MaizaBenabdesselam F, Bedjou F, Castronovo V, Bellahcène A, Tits M, Frédérich M (2013) Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int J Mol Sci 14:23533–23544
  • [56] Safa O, Soltanipoor MA, Rastegar S, Kazemi M, Dehkordi KN, Ghannadi A (2013) An ethnobotanical survey on hormozgan province, Iran. Avicenna J Phytomed 3:64–81
  • [57] Aytar, E. C. (2024). Glacium flavum-Derived Phytochemical Compounds and Their Molecular Interactions with SIRT1. ChemistrySelect, 9(45), e202403811. https://doi.org/10.1002/slct.202403811
  • [58] Meyer, G. M. J., Meyer, M. R., Wissenbach, D. K., & Maurer, H. H. (2013). Studies on the metabolism and toxicological detection of glaucine, an isoquinoline alkaloid from Glaucium flavum (Papaveraceae), in rat urine using GC-MS, LC-MSn and LC-high-resolution MSn. Journal of Mass Spectrometry, 48(1), 24-41. https://doi.org/10.1002/jms.3112
  • [59] Bozkurt, B., Ulkar, D., Nurlu, N., Coban, G., Gumus, Z. P., & Unver-Somer, N. (2024). Variability of Isoquinoline Alkaloid Profiles and Anticholinesterase Activities with Binding-Mode Predictions of Glaucium flavum Population. Chemistry & Biodiversity, 21(4), e202301865. https://doi.org/10.1002/cbdv.202301865
  • [60] Bournine L, Bensalem S, Wauters J-N, Iguer-Ouada M, MaizaBenabdesselam F, Bedjou F, Castronovo V, Bellahcène A, Tits M, Frédérich M (2013) Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int J Mol Sci 14:23533–23544
  • [61] Boulaaba, M., Kalai, F. Z., Dakhlaoui, S., Ezzine, Y., Selmi, S., Bourgou, S., Smaoui, A., Isoda, H., & Ksouri, R. (2019). Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds. Medicinal Chemistry Research, 28(12), 1995-2001. https://doi.org/10.1007/s00044-019-02429-y
  • [62] https://bizimbitkiler.org.tr/yeni/demos/technical/
  • [63] https://powo.science. kew. org/ taxon/urn:lsid:ipni. org:names:673167-1
  • [64] Uysal, A., Zengin, G., Durak, Y., & Aktumsek, A. (2016). Investigation of the antioxidant, antimutagenic properties and enzyme inhibition potential of Centaurea pterocaula extracts. Marmara Pharmaceutical Journal, 20(232-242). DOI: 10.12991/mpj.20162094922
  • [65] Akbulut, İ., Gürbüz, E., Rayman Ergün, A., & Baysal, T. (2021). Drying of apricots treated with Ginkgo biloba plant extract and determination of the quality properties. Journal of Advanced Research in Natural and Applied Sciences, 7(1), 145-159. DOI: doi.org/10.28979/jarnas.840237.
  • [66] Slinkard, K., Singleton, V. L., 1977: Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • [67] Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559.
  • [68] Benzie, I. F., & Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of agricultural and food chemistry, 47(2), 633-636.
  • [69] Apak, R., Güçlü, K., Ozyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural Food Chemistry, 52(26), 7970-7981. [CrossRef]
  • [70] Kumar, A., Varshney, V. K., Rawat, M.S.M., Martinez, J. R., & Stashenko, E. E. (2018). HS-SPME/GC/GC-MS Analysis of Volatile Constituents of Morina longifolia Wall. Journal of Essential Oil Bearing Plants, 21(1), 155-163. DOI: 10.1080/0972060X.2018.1437782
  • [71] Chen, L.1,2 and Liao, P. (2025). Current insights into plant volatile organic compound biosynthesis. Current Opinion in Plant Biology, 63, 102054. https://doi.org/10.1016/j.pbi.2025.02.003
  • [72] Achimón, F., Peschiutta, M. L., Brito, V. D., Ulla, S. B., & Pizzolitto, R. P. (2022). Sulcatone as a Plant-Derived Volatile Organic Compound for the Control of the Maize Weevil and Its Associated Phytopathogenic Fungi in Stored Maize. Plants, 11(3), 378. https://doi.org/10.3390/plants11030378
  • [73] Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect Dis. 2011, 30, 41–50.
  • [74]. Dambolena, J.S.; Zygadlo, J.A.; Rubinstein, H.R. Antifumonisin activity of natural phenolic compounds. A structure-property-activity relationship study. Int. J. Food Microbiol. 2011, 145, 140–146.
  • [75]. Tang, X.; Chen, S.; Wang, L. Purification and identification of carvacrol from the root of Stellera chamaejasme and research on its insecticidal activity. Nat. Prod. Res. 2011, 25, 320–325.
  • [76] Nostro, A.; Papalia, T. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent. Pat. Antiinfect. Drug Discov. 2012, 7, 28–35.
  • [77] Koparal, A.T.; Zeytinoglu, M. Effects of Carvacrol on a Human Non-Small Cell Lung Cancer (NSCLC) Cell Line, A549. Cytotechnology 2003, 43, 149–154.
  • [78] Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Metsios, A.; Lekkas, P.; Evangelou, A.M.; Kotsis, N.; et al. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol. 2006, 28, 121–125.
  • [79] Mezzoug, N.; Elhadri, A.; Dallouh, A.; Amkiss, S.; Skali, N.S.; Abrini, J.; Zhiri, A.; Baudoux, D.; Diallo, B.; El Jaziri, M.; et al. Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat. Res. 2007, 629, 100–110.
  • [80] Sokmen, A.; Sokmen, M.; Daferera, D.; Polissiou, M.; Candan, F.; Unlu, M.; Akpulat, H.A. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother. Res. 2004, 18, 451–456.
  • [81] Jung, M. Y., Bock, J. Y., Back, S. O., Lee, T. K., & Kim, J. H. (1997). Pyrazine contents and oxidative stabilities of roasted soybean oils. Food Chemistry, 60(1), 95–102.
  • [82]Oddoy, A., Bee, D., Emery, C., & Barer, G. (1991). Effects of ligustrazine on the pressure/flow relationship in isolated perfused rat lungs. European Respiratory Journal, 4, 1223–1227.
  • [83] Sun, Y. W., Jiang, J., Zhang, Z. J., Yu, P., Linda Wang, C. L., Xu, W., et al. (2008). Antioxidative and thrombolytic TMP nitrone for treatment of ischemic stroke. Bioorganic and Medicinal Chemistry, 16, 8868–8874.
  • [84] Zheng, F. M., Ren, Y. Z., & Zhao, T. F. (2005). Preliminary clinical observation on effect of sodium ferulate in treating diabetic nephropathy. Chinese Journal of Integrated Chinese and Western Medicine, 25(5), 419–421. [85] Aytar, E. C. (2024). Glaucium flavum-derived phytochemical compounds and their molecular interactions with SIRT1. ChemistrySelect, 9(45),e202403811.
  • [86] Halliwell B and Gutteridge JMC: Free radicals in Biology and Medicine. Oxford University Press, Oxford 1999.
  • [87] Hollman, P. C. H. (2001). Evidence for health benefits of plant phenols: local o r systemic effects Journal of the Science of Food and Agriculture, 81(9), 842-852. https://doi.org/10.1002/jsfa.900
  • [88] Pyrogallol, in: S. Budavari (Ed.), The Merck Index, 12th ed., Merck & Co. Inc., Whitehall, NJ, 1996, pp.1375–1376.
  • [89] M.A. Bianco, A. Handaji, H. Savolainen, Quantitative analysis of ellagic acid in hardwood samples, Sci. Tot. Environ. 222 (1998) 123–126
  • [90] Grodzicka, M.; Pena-Gonzalez, C.E.; Ortega, P.; Michlewska, S.; Lozano, R.; Bryszewska, M.; Mata, F.J.D.I.; Ionov, M. Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activity. Sustain. Mater. Technol. 2022, 33, e00497. [CrossRef]
  • [91] Kfoury, M.; Geagea, C.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem. 2019, 278, 163–169. [CrossRef]
  • [92] Raviadaran, R.; Ng, M.H.; Chandran, D.; Ooi, K.K.; Manickam, S. Stable W/O/W multiple nanoemulsion encapsulating natural tocotrienols and caffeic acid with cisplatin synergistically treated cancer cell lines (A549 and HEP G2), and reduced toxicity on normal cell line (HEK 293). Mater. Sci. Eng. C 2021, 121, 111808. [CrossRef] [PubMed]
  • [93]. Tabakam, G.T.; Kodama, T.; Donfack, A.R.N.; Nguekeu, Y.M.M.; Nomin-Erdene, B.; Htoo, Z.P.; Do, K.M.; Ngouela, S.A.; Tene, M.; Morita, H.; et al. A new caffeic acid ester and a new ceramide from the roots of Eriosema glomeratum. Phytochem. Lett. 2021, 45, 82–87. [CrossRef]
  • [94] Salsabila, R.; Perdani, M.S.; Kitakawa, N.S.; Hermansyah, H. Production of methyl caffeate as an intermediate product to produce caffeic acid phenethyl ester by esterification using cation-exchange resin. Energy Rep. 2020, 6, 528–533. [CrossRef]
  • [95] Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Bakhtiari Far, F.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021, 171, 105759. [CrossRef]
  • [96] Mauludin, R., Müller, R. H., & Keck, C. M. (2009). Development of an oral rutin nanocrystal formulation. International Journal of Pharmaceutics, 370(1–2), 202–209.
  • [97] Panasiak, W., Wleklik, M., Oraczewska, A., & Luczak, M. (1989). Influence of flavonoids on combined experimental infections with EMC virus and Staphylococcus aureus in mice. Acta Microbiologica Polonica, 38(2), 185–188.
  • [98] Koçanci, F.G., Hamamcioğlu, B., & Aslim, B. (2017). Neuroprotective Effects of Rutin and Quercetin Flavonoids in Glaucium corniculatum Methanol and Water Extracts. International Journal of Secondary Metabolite, 4(3), 85-93. https://doi.org/10.21448/ijsm.363347
  • [99] Özcandir, A., Mohammed, F.S., Sevindik, M., Aykurt, C., Selamoğlu, Z., & Akgül, H. (2024). Phenolic composition, total antioxidant, antiradical and antimicrobial potential of endemic Glaucium Alakirensis. Sigma Journal of Engineering and Natural Sciences, 42(1), 42-48. https://doi.org/10.14744/sigma.2024.00006
  • [100] Boulaaba, M., Zar Kalai, F., Dakhlaoui, S., Ezzine, Y., Selmi, S., Bourgou, S., Smaoui, A., Isoda, H., & Ksouri, R. (2019). Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds. Medicinal Chemistry Research, 28, 1995-2001. https://doi.org/10.1007/s00044-019-02429-y
  • [101] Özsoy, N., Yilmaz-Ozden, T., Aksoy-Sagirli, P., Şahin, H., & Sari, A. (2018). Antioxidant, Anti-acetylcholinesterase, Anti-inflammatory and DNA Protection Activities of Glaucium grandiflorum var. grandiflorum. Iranian Journal of Pharmaceutical Research, 17(2), 677-684.
  • [102] Kocanci, F. G., Hamamcioglu, B., & Aslim, B. (2017). The anti-AChE and anti-proliferative Activities of Glaucium acutidentatum and Glaucium corniculatum Alkaloid Extracts. Journal of Applied Pharmaceutical Science, 7(08), 191-200. DOI: 10.7324/JAPS.2017.70826

GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ

Yıl 2025, Cilt: 13 Sayı: 1, 115 - 127, 30.06.2025
https://doi.org/10.18586/msufbd.1681215

Öz

Bu çalışmada, Glaucium flavum'un toprak üstü kısımlarının fitokimyasal bileşimi ve antioksidan özellikleri araştırılmıştır. HPLC-DAD ve SPME-GC-MS analizleri sonucunda, uçucu bileşikler arasında benzaldehit (%37.47) ve 1-hekzanal-2-etil (%33.87), fenolik bileşikler içerisinde pirogallol (3089.23 mg/kg) ve kafeik asit (384.06 mg/kg), flavonoidler arasında ise rutin (16000 mg/kg) ve kateşin (649.58 mg/kg) yüksek miktarlarda tespit edilmiştir. Ayrıca bitkinin askorbik asit içeriği 1078.17 mg/kg olarak belirlenmiştir. Toplam fenolik içerik 13.84±0.46 mg GAE/g, toplam flavonoid içerik 7.65±0.22 mg QE/g olarak ölçülürken, FRAP (10.98±0.22 µmol Fe²⁺/g) ve CUPRAC (0.11±0.01 mmol TEAC/g) testleri güçlü antioksidan potansiyeli doğrulamıştır. Bulgular, Glaucium flavum'un zengin fitokimyasal içeriği ve antioksidan aktivitesi nedeniyle farmakolojik çalışmalarda değerli bir kaynak olabileceğini göstermektedir.

Kaynakça

  • [1]. N. Kumar, V. Pruthi Potential applications of ferulic acid from natural sources Biotechnology Reports, 4 (2014), pp. 86-93
  • [2]. K.H. Kwon, A. Barve, S. Yu, M.T. Huang, A.N. Kong Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models Acta Pharmacologica Sinica, 28 (2007), pp. 1409-1421
  • [3] Moore, M. Yousef, E. Tsiani Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols Nutrients, 8 (2016)
  • [4] Trivellini, M. Lucchesini, R. Maggini, H. Mosadegh, T.S.S. Villamarin, P. Vernieri, A. Mensuali Sodi, A. Pardossi Lamiaceae phenols as multifaceted compounds:bioactivity, industrial prospects and role of positive-stress Industrial Crops and Products, 83 (2016), pp. 241-254
  • [5]Y. Sakihama, M.F. Cohen, S.C. Grace, H. Yamasaki Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants Toxicology, 177 (2002), pp. 67-80
  • [6]…..W. Watjen, G. Michels, B. Steffan, P. Niering, Y. Chovolou, A. Kampkotter, Q.H. TranThi, P.Proksch, R. Kahl Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis The Journal of Nutrition, 135 (2005), pp. 525-531
  • [7] Ajila, C. M.; Brar, S. K.; Verma, M.; Tyagi, R. D.; Godbout, S.; Valéro, J. R. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31 (3), 227–249.
  • [8] Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrit. Rev. 1998, 56, 317–333.
  • [9] Carvalho, L. M.; Martini, M.; Moreira, A. P. L.; de Lima, A. P.; Correia, D.; Falcão, T.; Garcia, S. C.; de Bairros, A. V.; do Nascimento, P. C.; Bohrer, D. Presence of Synthetic Pharmaceuticals as Adulterants in Slimming Phytotherapeutic Formulations and Their Analytical Determination. Forensic Sci. Int. 2010, 204, 6–11.
  • [10] Carvalho, L. M. de; Moreira, A. P.; Martini, M.; Falcão, T. The Illegal Use of Synthetic Pharmaceuticals in Herbal Formulations: An Overview on the Adulteration Practice and Analytical Investigations. Forensic Sci. Rev. 2011, 23, 73–90.
  • [11] Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process. 2011, 89, 217–233.
  • [12] Maciel, M. A. M.; Pinto, A. C.; Veiga Jr., V. F.; Grynberg, N. F.; Echevarria, A. Plantas Medicinais: A Necessidade de Estudos Multidisciplinares. Quím. Nova 2002, 25 (3), 429–438.
  • [13] Balasundra, N.; Sundram, K.; Samman, S. 2006. Phenolic Compounds in Plants and Agro-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203.
  • [14] Stalikas, C. D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295.
  • [15] Casella, I. G.; Colonna, C.; Contursi, M. Electroanalytical Determination of Some Phenolic Acids by High-performance Liquid Chromatography at Gold Electrodes. Electroanalysis 2007, 19 (14), 1503–1508.
  • [16] Gotti, R. Capillary Electrophoresis of Phytochemical Substances in Herbal Drugs and Medicinal Plants. J. Pharm. Biomed. Anal. 2011, 55, 775–801
  • [17] Argyropoulos, D., Müller, J., 2014. Effect of convective-, vacuum- and freeze dryingon sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants 1,59–69.
  • [18] Kumar, V., Chauhan, R.S., Sood, H., Tandon, C., 2015. Cost effective quantification ofpicrosides in Picrorhiza kurroa by employing response surface methodologyusing HPLC-UV. Journal of Plant Biochemistry and Biotechnology 24, 376–384.
  • [19] Kumar, V., Sood, H., Chauhan, R.S., 2016. Optimization of a preparative RP-HPLCmethod for isolation and purification of picrosides in Picrorhiza kurroa. Journalof Plant Biochemistry and Biotechnology 25, 208–214.
  • [20] Ray, A., Dutta Gupta, S., Ghosh, S., 2013. Isolation and characterization of potentbioactive fraction with antioxidant and UV absorbing activity from Aloebarbadensis Miller gel. Journal of Plant Biochemistry and Biotechnology 22,483–487.
  • [21] Irakli, M.N., Samanidou, V.F., Biliaderis, C.G., Papadoyannis, I.N., 2012.Simultaneous determination of phenolic acids and flavonoids in rice usingsolid-phase extraction and RP-HPLC with photodiode array detection. Journalof Separation Science 35, 1603–1611.
  • [22] Shan, B., Cai, Y.Z., Sun, M., Corke, H., 2005. Antioxidant capacity of 26 spice extractsand characterization of their phenolic constituents. Journal of Agricultural andFood Chemistry 53, 7749–7759.
  • [23] Saito, S.T., Welzel, A., Suyenaga, E.S., Bueno, F., 2006. A method for fastdetermination of epigallocatechin gallate (EGCG) epicatechin (EC), catechin (C)and caffeine (CAF) in green tea using HPLC. Food Science and Technology(Campinas) 26, 394–400.
  • [24] Cantalapiedra, A., Gismera, M.J., Sevilla, M.T., Procopio, J.R., 2014. Sensitive andselective determination of phenolic compounds from aromatic plants using anelectrochemical detection coupled with HPLC method. Phytochemical Analysis25, 247–254.
  • [25] Barrajon-Catalan, E., Fernandez-Arroyo, S., Roldan, C., Guillen, E., Saura, D.,Segura-Carretero, A., Micol, V., 2011. A systematic study of the polyphenoliccomposition of aqueous extracts deriving from several Cistus genus species:evolutionary relationship. Phytochemical Analysis 22, 303–312.
  • [26] Harris, C.S., Burt, A.J., Saleem, A., Le, P.M., Martineau, L.C., Haddad, P.S., Bennett,S.A., Arnason, J.T., 2007. A single HPLC-PAD-APCI/MS method for thequantitative comparison of phenolic compounds found in leaf stem, root andfruit extracts of Vaccinium angustifolium. Phytochemical Analysis 18, 161–169.
  • [27] Kalili, K.M., de Villiers, A., 2011. Recent developments in the HPLC separation ofphenolic compounds. Journal of Separation Science 34, 854–876.
  • [28] Ribas-Agusti, A., Gratacos-Cubarsi, M., Sarraga, C., Garcia-Regueiro, J.A., Castellari,M., 2011. Analysis of eleven phenolic compounds including novel p-coumaroylderivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquidchromatography with photodiode array and mass spectrometry detection.Phytochemical Analysis 22, 555–563.
  • [29] Rodriguez-Solana, R., Salgado, J.M., Dominguez, J.M., Cortes-Dieguez, S., 2015.Comparison of Soxhlet, accelerated solvent and supercritical fluid extractiontechniques for volatile (GC–MS and GC/FID) and phenolic compounds(HPLC-ESI/MS/MS) from Lamiaceae species. Phytochemical Analysis 26, 61–71
  • [30] Stalikas, C.D., 2007. Extraction separation, and detection methods for phenolicacids and flavonoids. Journal of Separation Science 30, 3268–3295.
  • [31] Rambla, J.L.; Trapero-Mozos, A.; Diretto, G.; Rubio-Moraga, A.; Granell, A.; Gómez-Gómez, L.; Ahrazem, O. Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
  • [32] Zhang, J.; Zhao, J.; Xu, Y.; Liang, J.; Chang, P.; Yan, F.; Li, M.; Liang, Y.; Zou, Z. Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor. Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
  • [33] Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [PubMed]
  • [34] Ma, X.-W.; Su, M.-Q.; Wu, H.-X.; Zhou, Y.-G.; Wang, S.-B. Analysis of the Volatile Profile of Core Chinese Mango Germplasm by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Molecules 2018, 23, 1480. [Google Scholar] [CrossRef] [PubMed]
  • [35] Marsili, R. Flavor, Fragrance, and Odor Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
  • [36] Van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  • [37] Yang, S.; Fresnedo-Ramírez, J.; Wang, M.; Cote, L.; Schweitzer, P.; Barba, P.; Takacs, E.M.; Clark, M.; Luby, J.; Manns, D.C.; et al. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: A case study for marker-assisted selection in grapevine. Hortic. Res. 2016, 3, 16002. [Google Scholar] [CrossRef] [PubMed]
  • [38] Chaparro-Torres, L.A.; Bueso, M.C.; Fernández-Trujillo, J.P. Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. J. Sci. Food Agric. 2016, 96, 2352–2365. [Google Scholar] [CrossRef] [PubMed]
  • [39] Obando-Ulloa, J.M.; Ruiz, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chem. 2010, 118, 815–822. [Google Scholar] [CrossRef]
  • [40] Dunemann, F.; Ulrich, D.; Boudichevskaia, A.; Grafe, C.; Weber, W.E. QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny “Discovery” × “Prima”. Mol. Breed. 2009, 23, 501–521. [Google Scholar] [CrossRef]
  • [41] Vogt, J.; Schiller, D.; Ulrich, D.; Schwab, W.; Dunemann, F. Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica). Tree Genet. Genomes 2013, 9, 1493–1511. [Google Scholar] [CrossRef]
  • [42] Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Grando, M.S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 2009, 118, 653–669. [Google Scholar] [CrossRef] [PubMed]
  • [43] Doligez, A.; Audiot, E.; Baumes, R.; This, P. QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol. Breed. 2006, 18, 109–125. [Google Scholar] [CrossRef]
  • [44] Guillaumie, S.; Ilg, A.; Réty, S.; Brette, M.; Trossat-Magnin, C.; Decroocq, S.; Léon, C.; Keime, C.; Ye, T.; Baltenweck-Guyot, R.; et al. Genetic Analysis of the Biosynthesis of 2-Methoxy-3-Isobutylpyrazine, a Major Grape-Derived Aroma Compound Impacting Wine Quality. Source Plant Physiol. 2013, 162, 604–615. [Google Scholar] [CrossRef] [PubMed]
  • [45] Bezman, Y.; Mayer, F.; Takeoka, G.R.; Buttery, R.G.; Ben-oliel, G.; Rabinowitch, H.D.; Naim, M. Differential effects of tomato (Lycopersicon esculentum Mill) matrix on the volatility of important aroma compounds. J. Agric. Food Chem. 2003, 51, 722–726. [Google Scholar] [CrossRef] [PubMed]
  • [46] Vandendriessche, T.; Nicolai, B.M.; Hertog, M.L.A.T.M. Optimization of HS SPME Fast GC-MS for High-Throughput Analysis of Strawberry Aroma. Food Anal. Methods 2013, 6, 512–520. [Google Scholar] [CrossRef]
  • [47] García-Vico, L.; Belaj, A.; Sánchez-Ortiz, A.; Martínez-Rivas, J.M.; Pérez, A.G.; Sanz, C. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [PubMed
  • [48] Rappé G (1984) The distribution of some lesser known thalassochorous plant species along the Belgian coast, compared with their distribution in Western Europe. Biol Jaarb 52:35–56
  • [49] Solås HF, Stabbetoro OE, Nordal I (2007) The viability of a plant “on the edge”: Glaucium flavum (Papaveraceae) in Norway. Nord J Bot 24:433–444
  • [50] Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Syst 24:217–242
  • [51] Oostermeijer JGB (1996) Population size, genetic variation, and related parameters in small, isolated plant populations: a case study. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. The GeoJournal Library 35, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 61–68
  • [52] Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation in plants. Trends Ecol Evol 11(413):418
  • [53] Tawaha K, Alali F, Gharaibeh M, Mohammad M, El-Elimat T (2007) Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 104:1372–1378
  • [54] Arafa AM, Mohamed MES, Eldahmy SI (2016) The aerial parts of yellow horn poppy (Glaucium flavum cr.) growing in Egypt: isoquinoline alkaloids and biological activities. J Pharm Sci Res 8 (5):323–332
  • [55] Bournine L, Bensalem S, Wauters J-N, Iguer-Ouada M, MaizaBenabdesselam F, Bedjou F, Castronovo V, Bellahcène A, Tits M, Frédérich M (2013) Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int J Mol Sci 14:23533–23544
  • [56] Safa O, Soltanipoor MA, Rastegar S, Kazemi M, Dehkordi KN, Ghannadi A (2013) An ethnobotanical survey on hormozgan province, Iran. Avicenna J Phytomed 3:64–81
  • [57] Aytar, E. C. (2024). Glacium flavum-Derived Phytochemical Compounds and Their Molecular Interactions with SIRT1. ChemistrySelect, 9(45), e202403811. https://doi.org/10.1002/slct.202403811
  • [58] Meyer, G. M. J., Meyer, M. R., Wissenbach, D. K., & Maurer, H. H. (2013). Studies on the metabolism and toxicological detection of glaucine, an isoquinoline alkaloid from Glaucium flavum (Papaveraceae), in rat urine using GC-MS, LC-MSn and LC-high-resolution MSn. Journal of Mass Spectrometry, 48(1), 24-41. https://doi.org/10.1002/jms.3112
  • [59] Bozkurt, B., Ulkar, D., Nurlu, N., Coban, G., Gumus, Z. P., & Unver-Somer, N. (2024). Variability of Isoquinoline Alkaloid Profiles and Anticholinesterase Activities with Binding-Mode Predictions of Glaucium flavum Population. Chemistry & Biodiversity, 21(4), e202301865. https://doi.org/10.1002/cbdv.202301865
  • [60] Bournine L, Bensalem S, Wauters J-N, Iguer-Ouada M, MaizaBenabdesselam F, Bedjou F, Castronovo V, Bellahcène A, Tits M, Frédérich M (2013) Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int J Mol Sci 14:23533–23544
  • [61] Boulaaba, M., Kalai, F. Z., Dakhlaoui, S., Ezzine, Y., Selmi, S., Bourgou, S., Smaoui, A., Isoda, H., & Ksouri, R. (2019). Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds. Medicinal Chemistry Research, 28(12), 1995-2001. https://doi.org/10.1007/s00044-019-02429-y
  • [62] https://bizimbitkiler.org.tr/yeni/demos/technical/
  • [63] https://powo.science. kew. org/ taxon/urn:lsid:ipni. org:names:673167-1
  • [64] Uysal, A., Zengin, G., Durak, Y., & Aktumsek, A. (2016). Investigation of the antioxidant, antimutagenic properties and enzyme inhibition potential of Centaurea pterocaula extracts. Marmara Pharmaceutical Journal, 20(232-242). DOI: 10.12991/mpj.20162094922
  • [65] Akbulut, İ., Gürbüz, E., Rayman Ergün, A., & Baysal, T. (2021). Drying of apricots treated with Ginkgo biloba plant extract and determination of the quality properties. Journal of Advanced Research in Natural and Applied Sciences, 7(1), 145-159. DOI: doi.org/10.28979/jarnas.840237.
  • [66] Slinkard, K., Singleton, V. L., 1977: Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • [67] Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559.
  • [68] Benzie, I. F., & Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of agricultural and food chemistry, 47(2), 633-636.
  • [69] Apak, R., Güçlü, K., Ozyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural Food Chemistry, 52(26), 7970-7981. [CrossRef]
  • [70] Kumar, A., Varshney, V. K., Rawat, M.S.M., Martinez, J. R., & Stashenko, E. E. (2018). HS-SPME/GC/GC-MS Analysis of Volatile Constituents of Morina longifolia Wall. Journal of Essential Oil Bearing Plants, 21(1), 155-163. DOI: 10.1080/0972060X.2018.1437782
  • [71] Chen, L.1,2 and Liao, P. (2025). Current insights into plant volatile organic compound biosynthesis. Current Opinion in Plant Biology, 63, 102054. https://doi.org/10.1016/j.pbi.2025.02.003
  • [72] Achimón, F., Peschiutta, M. L., Brito, V. D., Ulla, S. B., & Pizzolitto, R. P. (2022). Sulcatone as a Plant-Derived Volatile Organic Compound for the Control of the Maize Weevil and Its Associated Phytopathogenic Fungi in Stored Maize. Plants, 11(3), 378. https://doi.org/10.3390/plants11030378
  • [73] Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect Dis. 2011, 30, 41–50.
  • [74]. Dambolena, J.S.; Zygadlo, J.A.; Rubinstein, H.R. Antifumonisin activity of natural phenolic compounds. A structure-property-activity relationship study. Int. J. Food Microbiol. 2011, 145, 140–146.
  • [75]. Tang, X.; Chen, S.; Wang, L. Purification and identification of carvacrol from the root of Stellera chamaejasme and research on its insecticidal activity. Nat. Prod. Res. 2011, 25, 320–325.
  • [76] Nostro, A.; Papalia, T. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent. Pat. Antiinfect. Drug Discov. 2012, 7, 28–35.
  • [77] Koparal, A.T.; Zeytinoglu, M. Effects of Carvacrol on a Human Non-Small Cell Lung Cancer (NSCLC) Cell Line, A549. Cytotechnology 2003, 43, 149–154.
  • [78] Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Metsios, A.; Lekkas, P.; Evangelou, A.M.; Kotsis, N.; et al. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol. 2006, 28, 121–125.
  • [79] Mezzoug, N.; Elhadri, A.; Dallouh, A.; Amkiss, S.; Skali, N.S.; Abrini, J.; Zhiri, A.; Baudoux, D.; Diallo, B.; El Jaziri, M.; et al. Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat. Res. 2007, 629, 100–110.
  • [80] Sokmen, A.; Sokmen, M.; Daferera, D.; Polissiou, M.; Candan, F.; Unlu, M.; Akpulat, H.A. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother. Res. 2004, 18, 451–456.
  • [81] Jung, M. Y., Bock, J. Y., Back, S. O., Lee, T. K., & Kim, J. H. (1997). Pyrazine contents and oxidative stabilities of roasted soybean oils. Food Chemistry, 60(1), 95–102.
  • [82]Oddoy, A., Bee, D., Emery, C., & Barer, G. (1991). Effects of ligustrazine on the pressure/flow relationship in isolated perfused rat lungs. European Respiratory Journal, 4, 1223–1227.
  • [83] Sun, Y. W., Jiang, J., Zhang, Z. J., Yu, P., Linda Wang, C. L., Xu, W., et al. (2008). Antioxidative and thrombolytic TMP nitrone for treatment of ischemic stroke. Bioorganic and Medicinal Chemistry, 16, 8868–8874.
  • [84] Zheng, F. M., Ren, Y. Z., & Zhao, T. F. (2005). Preliminary clinical observation on effect of sodium ferulate in treating diabetic nephropathy. Chinese Journal of Integrated Chinese and Western Medicine, 25(5), 419–421. [85] Aytar, E. C. (2024). Glaucium flavum-derived phytochemical compounds and their molecular interactions with SIRT1. ChemistrySelect, 9(45),e202403811.
  • [86] Halliwell B and Gutteridge JMC: Free radicals in Biology and Medicine. Oxford University Press, Oxford 1999.
  • [87] Hollman, P. C. H. (2001). Evidence for health benefits of plant phenols: local o r systemic effects Journal of the Science of Food and Agriculture, 81(9), 842-852. https://doi.org/10.1002/jsfa.900
  • [88] Pyrogallol, in: S. Budavari (Ed.), The Merck Index, 12th ed., Merck & Co. Inc., Whitehall, NJ, 1996, pp.1375–1376.
  • [89] M.A. Bianco, A. Handaji, H. Savolainen, Quantitative analysis of ellagic acid in hardwood samples, Sci. Tot. Environ. 222 (1998) 123–126
  • [90] Grodzicka, M.; Pena-Gonzalez, C.E.; Ortega, P.; Michlewska, S.; Lozano, R.; Bryszewska, M.; Mata, F.J.D.I.; Ionov, M. Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activity. Sustain. Mater. Technol. 2022, 33, e00497. [CrossRef]
  • [91] Kfoury, M.; Geagea, C.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem. 2019, 278, 163–169. [CrossRef]
  • [92] Raviadaran, R.; Ng, M.H.; Chandran, D.; Ooi, K.K.; Manickam, S. Stable W/O/W multiple nanoemulsion encapsulating natural tocotrienols and caffeic acid with cisplatin synergistically treated cancer cell lines (A549 and HEP G2), and reduced toxicity on normal cell line (HEK 293). Mater. Sci. Eng. C 2021, 121, 111808. [CrossRef] [PubMed]
  • [93]. Tabakam, G.T.; Kodama, T.; Donfack, A.R.N.; Nguekeu, Y.M.M.; Nomin-Erdene, B.; Htoo, Z.P.; Do, K.M.; Ngouela, S.A.; Tene, M.; Morita, H.; et al. A new caffeic acid ester and a new ceramide from the roots of Eriosema glomeratum. Phytochem. Lett. 2021, 45, 82–87. [CrossRef]
  • [94] Salsabila, R.; Perdani, M.S.; Kitakawa, N.S.; Hermansyah, H. Production of methyl caffeate as an intermediate product to produce caffeic acid phenethyl ester by esterification using cation-exchange resin. Energy Rep. 2020, 6, 528–533. [CrossRef]
  • [95] Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Bakhtiari Far, F.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021, 171, 105759. [CrossRef]
  • [96] Mauludin, R., Müller, R. H., & Keck, C. M. (2009). Development of an oral rutin nanocrystal formulation. International Journal of Pharmaceutics, 370(1–2), 202–209.
  • [97] Panasiak, W., Wleklik, M., Oraczewska, A., & Luczak, M. (1989). Influence of flavonoids on combined experimental infections with EMC virus and Staphylococcus aureus in mice. Acta Microbiologica Polonica, 38(2), 185–188.
  • [98] Koçanci, F.G., Hamamcioğlu, B., & Aslim, B. (2017). Neuroprotective Effects of Rutin and Quercetin Flavonoids in Glaucium corniculatum Methanol and Water Extracts. International Journal of Secondary Metabolite, 4(3), 85-93. https://doi.org/10.21448/ijsm.363347
  • [99] Özcandir, A., Mohammed, F.S., Sevindik, M., Aykurt, C., Selamoğlu, Z., & Akgül, H. (2024). Phenolic composition, total antioxidant, antiradical and antimicrobial potential of endemic Glaucium Alakirensis. Sigma Journal of Engineering and Natural Sciences, 42(1), 42-48. https://doi.org/10.14744/sigma.2024.00006
  • [100] Boulaaba, M., Zar Kalai, F., Dakhlaoui, S., Ezzine, Y., Selmi, S., Bourgou, S., Smaoui, A., Isoda, H., & Ksouri, R. (2019). Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds. Medicinal Chemistry Research, 28, 1995-2001. https://doi.org/10.1007/s00044-019-02429-y
  • [101] Özsoy, N., Yilmaz-Ozden, T., Aksoy-Sagirli, P., Şahin, H., & Sari, A. (2018). Antioxidant, Anti-acetylcholinesterase, Anti-inflammatory and DNA Protection Activities of Glaucium grandiflorum var. grandiflorum. Iranian Journal of Pharmaceutical Research, 17(2), 677-684.
  • [102] Kocanci, F. G., Hamamcioglu, B., & Aslim, B. (2017). The anti-AChE and anti-proliferative Activities of Glaucium acutidentatum and Glaucium corniculatum Alkaloid Extracts. Journal of Applied Pharmaceutical Science, 7(08), 191-200. DOI: 10.7324/JAPS.2017.70826
Toplam 101 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Analitik Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abidin Gümrükçüoğlu 0000-0001-7285-9664

Gönderilme Tarihi 21 Nisan 2025
Kabul Tarihi 29 Mayıs 2025
Erken Görünüm Tarihi 24 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Gümrükçüoğlu, A. (2025). GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ. Mus Alparslan University Journal of Science, 13(1), 115-127. https://doi.org/10.18586/msufbd.1681215
AMA Gümrükçüoğlu A. GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ. MAUN Fen Bil. Dergi. Haziran 2025;13(1):115-127. doi:10.18586/msufbd.1681215
Chicago Gümrükçüoğlu, Abidin. “GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ”. Mus Alparslan University Journal of Science 13, sy. 1 (Haziran 2025): 115-27. https://doi.org/10.18586/msufbd.1681215.
EndNote Gümrükçüoğlu A (01 Haziran 2025) GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ. Mus Alparslan University Journal of Science 13 1 115–127.
IEEE A. Gümrükçüoğlu, “GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ”, MAUN Fen Bil. Dergi., c. 13, sy. 1, ss. 115–127, 2025, doi: 10.18586/msufbd.1681215.
ISNAD Gümrükçüoğlu, Abidin. “GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ”. Mus Alparslan University Journal of Science 13/1 (Haziran2025), 115-127. https://doi.org/10.18586/msufbd.1681215.
JAMA Gümrükçüoğlu A. GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ. MAUN Fen Bil. Dergi. 2025;13:115–127.
MLA Gümrükçüoğlu, Abidin. “GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ”. Mus Alparslan University Journal of Science, c. 13, sy. 1, 2025, ss. 115-27, doi:10.18586/msufbd.1681215.
Vancouver Gümrükçüoğlu A. GLAUCIUM FLAVUM BİTKİSİNİN TOPRAK ÜSTÜ KISIMLARINDA BULUNAN FENOLİK BİLEŞİKLERİN, UÇUCU BİLEŞENLERİN VE ANTİOKSİDAN KAPASİTENİN ANALİZİ. MAUN Fen Bil. Dergi. 2025;13(1):115-27.