Araştırma Makalesi
BibTex RIS Kaynak Göster

Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları

Yıl 2017, Cilt: 5 Sayı: 2, 471 - 477, 01.12.2017

Öz

Bu çalışmada R2 de  vektörlerden oluşan iki sistemin, yine R2 de tüm benzerlik dönüşümlerinin grubu olan  G=S(2) grubuna göre denklik şartlarının; bu vektörlerin G-invaryant  rasyonel fonksiyonlar  cismi olan R(x1,x2,…,xk)S(2)   cisminin üreteçleri cinsinden ifade edilmesi çalışılmıştır. Böylece R2 de verilen düzlemsel Bezier eğrilerinin  S(2) grubuna göre denklik şartları da ifade edilmiştir. 

Kaynakça

  • Kurşun H.ve Kalkan Y., İstanbul’ da Farklı Tarihlerde Yapılmış Doğalgaz Alt Yapı Haritalarının Doğruluk Yönünden bir Karşılaştırılması, 2. Mühendislik Ölçmeleri Sempozyumu, 23-25 Kasım 2005, İTÜ, İstanbul
  • Yaprak S ve Yaprak H., Comparison of GPS Stop and Go Method and Electronic Tachometry Technique in Map Production, Gazi Üniversitesi Journal of Science ,18,4 (2005) 627-637.
  • Özer S., Kortewed –de Vries Denklemlerinin Nümerik Çözümü, Doktora Tezi, İnönü Üniversitesi Fen bilimleri Enstitüsü, 1995.
  • Kai- Tai Fang, et all, Critical value determination on similarity of Fingerprints, Chemometrics and Intelligent Laboratory Systems, 82, 1 (2006) 236-240.
  • Wang L.X., et all, Vectorial angle method for evaluating the similarity between two chromatographic fingerprints of chinese herb, Acta Pharmaceutica Sinica, 37, 9 (2002) 713-717.
  • Dresner Martin, Leisure versus business passengers: Similarities, differences, and implications, Journal of Air Transport Menagement, 12 (2006) 28-32.
  • Yo Horikawa, Bispectrum – based feature of 2D and 3D images invariant to similarity Transformations, Proc. IEEE, (2000) 511-514.
  • Yo Horikawa, Pattern recognition with invariance to similarity transformations based on the third- order correlation, Proc. 13th. International Conference on Pattern Recognition (ICPR’96) , 2 (1996) 200-204.
  • Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946
  • Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
  • İdris Oren, Invariants of Points fort he orthogonal groups O(3,1), PhD. Thesis, Karadeniz Technical University, 2007.
  • Yasemin Sağıroğlu, Affine Differential Invariants of parametric curves, Ph D. Thesis, Karadeniz Technical University, 2002.
  • Alexander Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory, journal of Algebra, 319, (2008), 1305-1319.
  • Muhsin Incesu, Osman Gursoy, On Similarity Invarant Rational Function fot k vector variables and their genarators in R2, Modelling and Application Theory, V.1 issue 1 , (2016) ,37-53.
  • Muhsin Incesu, Osman Gursoy, LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, V.5, No. 3, (2017) 70-84.
  • Greub W. H., Linear algebra, 3rd. Ed., Springer- Verlag Berlin Heidelberg, Netherland, 1967.
  • Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.

The S(2) equivalence Conditions of Planar Bezier Curves

Yıl 2017, Cilt: 5 Sayı: 2, 471 - 477, 01.12.2017

Öz

In this paper it is studied that the equivalence conditions of two systems consisted of vectors according to the group G=S(2) of similarity transformations in R2 in terms of the generator invariants of the field G-invariant rational functions R(x1,x2,…,xk)S(2).  So the equivalence conditions of two splanar Bezier curves are expressed. 

Kaynakça

  • Kurşun H.ve Kalkan Y., İstanbul’ da Farklı Tarihlerde Yapılmış Doğalgaz Alt Yapı Haritalarının Doğruluk Yönünden bir Karşılaştırılması, 2. Mühendislik Ölçmeleri Sempozyumu, 23-25 Kasım 2005, İTÜ, İstanbul
  • Yaprak S ve Yaprak H., Comparison of GPS Stop and Go Method and Electronic Tachometry Technique in Map Production, Gazi Üniversitesi Journal of Science ,18,4 (2005) 627-637.
  • Özer S., Kortewed –de Vries Denklemlerinin Nümerik Çözümü, Doktora Tezi, İnönü Üniversitesi Fen bilimleri Enstitüsü, 1995.
  • Kai- Tai Fang, et all, Critical value determination on similarity of Fingerprints, Chemometrics and Intelligent Laboratory Systems, 82, 1 (2006) 236-240.
  • Wang L.X., et all, Vectorial angle method for evaluating the similarity between two chromatographic fingerprints of chinese herb, Acta Pharmaceutica Sinica, 37, 9 (2002) 713-717.
  • Dresner Martin, Leisure versus business passengers: Similarities, differences, and implications, Journal of Air Transport Menagement, 12 (2006) 28-32.
  • Yo Horikawa, Bispectrum – based feature of 2D and 3D images invariant to similarity Transformations, Proc. IEEE, (2000) 511-514.
  • Yo Horikawa, Pattern recognition with invariance to similarity transformations based on the third- order correlation, Proc. 13th. International Conference on Pattern Recognition (ICPR’96) , 2 (1996) 200-204.
  • Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946
  • Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
  • İdris Oren, Invariants of Points fort he orthogonal groups O(3,1), PhD. Thesis, Karadeniz Technical University, 2007.
  • Yasemin Sağıroğlu, Affine Differential Invariants of parametric curves, Ph D. Thesis, Karadeniz Technical University, 2002.
  • Alexander Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory, journal of Algebra, 319, (2008), 1305-1319.
  • Muhsin Incesu, Osman Gursoy, On Similarity Invarant Rational Function fot k vector variables and their genarators in R2, Modelling and Application Theory, V.1 issue 1 , (2016) ,37-53.
  • Muhsin Incesu, Osman Gursoy, LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, V.5, No. 3, (2017) 70-84.
  • Greub W. H., Linear algebra, 3rd. Ed., Springer- Verlag Berlin Heidelberg, Netherland, 1967.
  • Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Muhsin İncesu

Osman Gürsoy Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA İncesu, M., & Gürsoy, O. (2017). Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 5(2), 471-477.
AMA İncesu M, Gürsoy O. Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. MAUN Fen Bil. Dergi. Aralık 2017;5(2):471-477.
Chicago İncesu, Muhsin, ve Osman Gürsoy. “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5, sy. 2 (Aralık 2017): 471-77.
EndNote İncesu M, Gürsoy O (01 Aralık 2017) Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5 2 471–477.
IEEE M. İncesu ve O. Gürsoy, “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”, MAUN Fen Bil. Dergi., c. 5, sy. 2, ss. 471–477, 2017.
ISNAD İncesu, Muhsin - Gürsoy, Osman. “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5/2 (Aralık 2017), 471-477.
JAMA İncesu M, Gürsoy O. Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. MAUN Fen Bil. Dergi. 2017;5:471–477.
MLA İncesu, Muhsin ve Osman Gürsoy. “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 2, 2017, ss. 471-7.
Vancouver İncesu M, Gürsoy O. Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. MAUN Fen Bil. Dergi. 2017;5(2):471-7.