Investigation of The Microstructural and Mechanical Propertıes of AH36 Sheet Metal Joıned By Underwater Welding
Yıl 2023,
, 1 - 16, 04.04.2023
Nur Benuşe Yıldız
,
Uğur Gürol
,
Hakan Baykal
,
Mustafa Koçak
Öz
In this study, AH36 steel plates, commonly used in the hull of ships and the construction of tanks in the marine industry, were butt welded underwater using the shielded metal arc welding method and E6013 (GeKaTec UW E6013) rutile electrodes. Welding operations were carried out by expert industrial divers at a depth of 4 meters in a real sea environment. The plates were first subjected to non-destructive testing tests by the requirements of the AWS D3.6 standard. Then, hardness, Charpy impact, bending, and tensile tests were performed to determine the mechanical properties of the welded plates joined underwater. Finally, the results were interpreted together with the microstructural transformations in the weld area.
Kaynakça
- Alajmi, E.F., Alqenaeci, A.A. (2017). Underwater welding techniques, International Journal of Engineering Research and Application, 7 (2), 14-17.
- Balık, B.E. (2008). Gemi inşaatında kaynak sırası yöntem ilişkisi ve kaynak muayene planlarının incelenmesi (Yüksek Lisans Tezi), Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- Brown, R.T. & Masubuchi, K. (1975). Fundamental research on underwater welding, Welding Research Supplement, June, 178-188. Retrieved from http://files.aws.org/wj/supplement/WJ_1975_06_s178.pdf
- Boutsali, V.G. (2016). Study of microstructure and corrosion behavior of AH36 FSW welds and HSLA S690 ARC welds (Master Thesis), National Technical University of Athens, Athens.
- Çolak, Z., Ayan, Y. ve Kahraman, N. (2020). Gerçek deniz ortamında su altı kaynağı ile birleştirilen Grade AH36 gemi sacının kaynak bölgesinin karakterizasyonu, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 775-785, Doi: https://doi.org/10.17341/gazimmfd.519055
- Fydrych, D., Labanowski, J. & Rogalski, G. (2013). Weldability of high strength steels in wet welding conditions, Polish Maritime Research, 20(2), 67-73. Doi: https://doi.org/10.2478/pomr-2013-0018
- Garašić, I., Underwater welding, Welding engineering and technology. Erişim adresi : https://www.eolss.net/sample-chapters/c05/E6-171-08.pdf
- Gao, W., Wang, D., Cheng, F., Di, X., Deng, C. & Xu, W. (2016). Microstructural and mechanical performance of underwater wetwelded S355 steel, Journal of Materials Processing Technology, 238, 333-340. Doi: https://doi.org/10.1016/j.jmatprotec.2016.07.039
- Gürol, U., Baykal, H., Yıldız N.B., Yılmaz, C., Danışkan, Ö., Koçak, M. (2022). Investigation of the microstructural and mechanical properties of welding joints made with underwater electrodes, Journal of the Faculty of Engineering and Architecture of Gazi University, 37(4), 2211-2223. Doi: https://doi.org/10.17341/gazimmfd.990465
- İmdat, K., Kaya, Y. ve Kahraman, N. (2018). Grade A gemi sacının örtülü elektrod ark kaynak yöntemi ile sualtı ve atmosferik şartlarda birleştirilebilirliğinin araştırılması, Politeknik Dergisi, 21(3), 543-552. Doi: https://doi.org/10.2339/politeknik.428975
- Kahraman, N., Gülenç, B. & Durgutlu, A. (2005). Investıgation of the effect of electrode extension distance on microstructural and mechanical properties of low carbon steel welded with submerged arc welding, Gazi University Journal of Science, 18(3) 473-480.
- Labanowski, J. (2011). Development of under-water welding techniques, Welding International, 25(12), 933-937, Doi: https://doi.org/10.1080/09507116.2010.540847
- Pessoa, E., Bracarense, A., Santos, V., Asunçao, F., Monteiro, M., Marinho, R., Vieira, L. & Siva, D. (2013). Wet welding field trials in shallow waters for structural repairs in floating oil production units, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, France. Doi: https://doi.org/10.1115/OMAE2013-10097
- Rowe, M. & Liu, S. (2001). Recent developments in underwater wet welding. Science And Technology of Welding and Joining, 6(6), 387-396. Doi: https://doi.org/10.1179/stw.2001.6.6.387
- Tomkow, J., Fydrych, D. & Wilk, K. (2020a). Effect of electrode waterproof coating on quality of underwater wet welded joints, Materials, 13, 2947,1-15. Doi: https://doi.org/10.3390/ma13132947
- Tomkow, J., Janeczek, A., Rogalski, G. And Wolski, A. (2020b). Underwater local cavity welding of S460N steel, Materials, 13, 5535. Doi: https://doi.org/10.3390/ma13235535
- Winarto, W., Purnama, D. & Churniawan, I. (2018). The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates”, AIP Conference Proceedings 1945, 020048, Doi: https://doi.org/10.1063/1.5030270
Sualtında Birleştirilen AH36 Gemi Sacının Mikro Yapı ve Mekanik Özelliklerinin İncelenmesi
Yıl 2023,
, 1 - 16, 04.04.2023
Nur Benuşe Yıldız
,
Uğur Gürol
,
Hakan Baykal
,
Mustafa Koçak
Öz
Bu çalışmada, örtülü elektrot ark kaynağı yöntemi ile yerli E6013 rutil elektrotlar (GeKaTec UW E6013) kullanılarak gemi imalat sektöründe; gemilerin gövdesinde ve tankların yapımında yaygın olarak kullanılan AH36 çelik plakaları su altında alın alına birleştirilmiştir. Kaynak işlemleri gerçek deniz ortamında 4 metrelik bir derinlikte uzman sanayi dalgıçları tarafından gerçekleştirilmiştir. Plakalar ilk olarak AWS D3.6 standardının gerekliliklerine uygun olarak tahribatsız muayene testlerine tabi tutulmuştur. Daha sonra su altında birleştirilen kaynaklı plakaların mekanik özelliklerini belirlemek amacıyla sertlik, çentik darbe, eğme ve çekme testleri uygulanmış olup, sonuçlar kaynak bölgesinde meydana gelen mikro yapısal dönüşümlerle birlikte yorumlanmıştır.
Destekleyen Kurum
TUBİTAK
Teşekkür
Bu çalışmayı “TÜBİTAK 1501- Sanayi Ar-Ge Projeleri Destekleme Programı” kapsamında “3180212” no’lu proje ile destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TUBİTAK) teşekkür ederiz. Ayrıca, çalışmalarımız boyunca bizlere destek olan İstanbul Gedik Üniversitesi Su Altı Teknolojileri Programı öğretim üyelerine ve sayın Ömür Danışkan’a teşekkürlerimizi bir borç biliriz.
Kaynakça
- Alajmi, E.F., Alqenaeci, A.A. (2017). Underwater welding techniques, International Journal of Engineering Research and Application, 7 (2), 14-17.
- Balık, B.E. (2008). Gemi inşaatında kaynak sırası yöntem ilişkisi ve kaynak muayene planlarının incelenmesi (Yüksek Lisans Tezi), Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- Brown, R.T. & Masubuchi, K. (1975). Fundamental research on underwater welding, Welding Research Supplement, June, 178-188. Retrieved from http://files.aws.org/wj/supplement/WJ_1975_06_s178.pdf
- Boutsali, V.G. (2016). Study of microstructure and corrosion behavior of AH36 FSW welds and HSLA S690 ARC welds (Master Thesis), National Technical University of Athens, Athens.
- Çolak, Z., Ayan, Y. ve Kahraman, N. (2020). Gerçek deniz ortamında su altı kaynağı ile birleştirilen Grade AH36 gemi sacının kaynak bölgesinin karakterizasyonu, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 775-785, Doi: https://doi.org/10.17341/gazimmfd.519055
- Fydrych, D., Labanowski, J. & Rogalski, G. (2013). Weldability of high strength steels in wet welding conditions, Polish Maritime Research, 20(2), 67-73. Doi: https://doi.org/10.2478/pomr-2013-0018
- Garašić, I., Underwater welding, Welding engineering and technology. Erişim adresi : https://www.eolss.net/sample-chapters/c05/E6-171-08.pdf
- Gao, W., Wang, D., Cheng, F., Di, X., Deng, C. & Xu, W. (2016). Microstructural and mechanical performance of underwater wetwelded S355 steel, Journal of Materials Processing Technology, 238, 333-340. Doi: https://doi.org/10.1016/j.jmatprotec.2016.07.039
- Gürol, U., Baykal, H., Yıldız N.B., Yılmaz, C., Danışkan, Ö., Koçak, M. (2022). Investigation of the microstructural and mechanical properties of welding joints made with underwater electrodes, Journal of the Faculty of Engineering and Architecture of Gazi University, 37(4), 2211-2223. Doi: https://doi.org/10.17341/gazimmfd.990465
- İmdat, K., Kaya, Y. ve Kahraman, N. (2018). Grade A gemi sacının örtülü elektrod ark kaynak yöntemi ile sualtı ve atmosferik şartlarda birleştirilebilirliğinin araştırılması, Politeknik Dergisi, 21(3), 543-552. Doi: https://doi.org/10.2339/politeknik.428975
- Kahraman, N., Gülenç, B. & Durgutlu, A. (2005). Investıgation of the effect of electrode extension distance on microstructural and mechanical properties of low carbon steel welded with submerged arc welding, Gazi University Journal of Science, 18(3) 473-480.
- Labanowski, J. (2011). Development of under-water welding techniques, Welding International, 25(12), 933-937, Doi: https://doi.org/10.1080/09507116.2010.540847
- Pessoa, E., Bracarense, A., Santos, V., Asunçao, F., Monteiro, M., Marinho, R., Vieira, L. & Siva, D. (2013). Wet welding field trials in shallow waters for structural repairs in floating oil production units, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, France. Doi: https://doi.org/10.1115/OMAE2013-10097
- Rowe, M. & Liu, S. (2001). Recent developments in underwater wet welding. Science And Technology of Welding and Joining, 6(6), 387-396. Doi: https://doi.org/10.1179/stw.2001.6.6.387
- Tomkow, J., Fydrych, D. & Wilk, K. (2020a). Effect of electrode waterproof coating on quality of underwater wet welded joints, Materials, 13, 2947,1-15. Doi: https://doi.org/10.3390/ma13132947
- Tomkow, J., Janeczek, A., Rogalski, G. And Wolski, A. (2020b). Underwater local cavity welding of S460N steel, Materials, 13, 5535. Doi: https://doi.org/10.3390/ma13235535
- Winarto, W., Purnama, D. & Churniawan, I. (2018). The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates”, AIP Conference Proceedings 1945, 020048, Doi: https://doi.org/10.1063/1.5030270