Araştırma Makalesi
BibTex RIS Kaynak Göster

DETERMINATION OF LQR CONTROLLER PARAMETERS FOR STABILIZATION AND POSITION CONTROL OF DOUBLE INVERTED PENDULUM USING THE BEES ALGORITHM

Yıl 2016, Cilt: 57 Sayı: 679, 53 - 62, 30.08.2016

Öz

Control theory for stabilization of the inverted pendulum is quite popular among researchers working
in this field. The inverted pendulum with unstable and non-linear structure is system which commonly
used for determining the performance of the current controller and designing new control theories.
In this study, LQR controller has been designed with The Bees Algorithm (BA) for stabilization and
position control of double inverted pendulum which is of three degrees of freedom. LQR controller
parameters (Q and R) which are predesigned, optimised with The Bees Algorithm and obtained LQR
gain matrix. Modelling of system, controller design and optimisation process has been carried out
with MATLAB and MATLAB/Simulink program. Three different configurations were made selecting
different The Bees Algorithm parameters for examining the effectiveness of the presented method
which is scope of this study. Effect of the system response of LQR gain matrices have been simulated
and results are presented graphically

Kaynakça

  • 1. Nikolov, S., Nedev, V. 2016. “Bifurcation Analysis and Dynamic Behaviour of an Inverted Pendulum with Bounded Control,” Journal of Theoretical and Applied Mechanics, vol. 46 (1), p. 17-32.
  • 2. Bilgiç, H. H., Şen, M. A., Yapıcı, A., Kalyoncu, M. 2014. “Doğrusal Ters Sarkacın Denge Kontrolü İçin Yapay Sinir Ağı Tabanlı Bulanık Mantık & LQR Kontrolcü Tasarımı,” Otomatik Kontrol Ulusal Toplantısı (TOK 2014) (Poster), 14-17 Haziran 2015, İzmir, Otomatik Kontrol Ulusal Toplantısı Bildiriler Kitabı, Makina Teorisi Derneği, Ankara, s. 921-926
  • 3. Saidi, E., Hammi, Y., Douik, A. 2016. “Equivalence between PWA Formalism and MLD Formalism: Inverted Pendulum System Example,” International Journal of Applied Engineering Research, vol. 11 (2), p. 1353-1360.
  • 4. Bilgiç, H. H., Conker, Ç., Yavuz, H., Şen, M. A. 2015. “Sarkaç Tipi Bir Tepe Vincinin Kontrolüne Bulanık Yaklaşım,” Uluslararası Katılımlı 17. Makina Teorisi Sempozyumu, 14-17 Haziran 2015, İzmir.
  • 5. Mifsud, A., Benallegue, M., Lamiraux, F. 2016. “Stabilizationof a Compliant Humanoid Robot Using Only Inertial Measurement Units with a Viscoelastic Reaction Mass Pendulum Model,” Rapport LAAS, 16063, hal-01285643.
  • 6. Suzuki, Y., et al. 2012. "Intermittent Control with Ankle, Hip, and Mixed Strategies during Quiet Standing: A Theoretical Proposal Based on a Double Inverted Pendulum Model," Journal of Theoretical Biology, vol. 310, p. 55-79.
  • 7. Colobert, B., et al. 2006. "Force-Flate Based Computation of Ankle and Hip Strategies from Double-Inverted Pendulum Model," Clinical Biomechanics, vol. 21(4), p. 427-434.
  • 8. Nagasaki, T., Kajita, S., Yokoi, K., Kaneko, K., Hirukawa, H., Tanie, K. 2003. “Running Pattern Generation for a Humanoid Robot,” Journal-Robotics Society of Japan, vol. 21(8), p. 74-80.
  • 9. Poorhossein, A., Vahidian, K. A. 2010. “Design and Implementation of Sugeno Controller for Inverted Pendulum on a Cart System,” In IEEE 8th International Symposium on Intelligent Systems and Informatics, 10-11September 2010, Subotica, Serbia, p. 641-646.
  • 10. Kizir, S. 2008. “Doğrusal Olmayan Ters Sarkaç Sisteminin Tasarımı ve Kontrolü,” Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • 11. Boubaker, O. 2012. “The Inverted Pendulum: A Fundamental Benchmark in Control Theory and Robotics,” In Education and e-Learning Innovations (ICEELI), 2012 International Conference, 1-3 July 2012, Sousse, Tunus, p. 1-6.
  • 12. Wanli, Z., Guoxin, L., Lirong, W. 2014. “Research on the Control Method of Inverted Pendulum Based on Kalman Filter,” In Dependable, Autonomic and Secure Computing (DASC), IEEE 12th International Conference, 24-27 August 2014, Dalian, China, p. 520-523.
  • 13. Singh, N., Yadav, S. K. 2012. “Comparison of LQR and PD Controller for Stabilizing Double Inverted Pendulum System,” International Journal of Engineering, vol. 1 (12), p. 69-74.
  • 14. Bilgiç H. H., Conker Ç., Yavuz, H. 2016. “Çift Ters Sarkacın Denge Kontrolü İçin Yeni Bir Bulanık Mantık Kontrolcü Yaklaşımı,” International Conference on Natural Science and Engineering (ICNASE’16) 19-20 March 2016, Kilis, Turkey, p. 2899-2908.
  • 15. Bogdanov, A. 2004. “Optimal Control of a Double Inverted Pendulum on a Cart,” Oregon Health and Science University, Tech. Rep. CSE-04-006, OGI School of Science and Engineering, Beaverton, OR.
  • 16. Prasad, L. B., Tyagi, B., Gupta, H. O. 2011. “Optimal Control of Nonlinear Inverted Pendulum Dynamical System with Disturbance Input Using PID Controller & LQR,” In Control System, Computing and Engineering (ICCSCE), 2012 International Conference, 23-25 November 2012, Penang, p. 540-545.
  • 17. Quanser. 2012. Linear Double Inverted Pendulum Experiment User Manuel, Quanser Inc.
  • 18. Anderson, B. D. O., Moore, J. B. 1989. Optimal Control–Linear Quadratic Methods, ISBN: 0 – 13 – 638651 – 2, Prentice Hall.
  • 19. Amir, S., Basiri, S. O. 2011. “Optimal Design of LQR Weighting Matrices Based on Intelligent Optimization Methods,” International Journal of Intelligent Information Processing, vol. 2, p. 57–62.
  • 20. Zhang, J., Zhang, L., Xie, J. 2011. “Application of Memetic Algorithm in Control of Linear Inverted Pendulum,” IEEE International Conference on Cloud Computing and Intelligence Systems, 15-17 September 2011, Beijing, China, p. 103-107.
  • 21. Tijani, I. B., Akmeliawati, R., Abdullateef, A. I. 2013. “Control of an Inverted Pendulum Using MODE-Based Optimized LQR Controller,” IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 19 -21 June 2013, Melbourne, Australia, p. 1759-1764.
  • 22. Wongsathan, C., Sirima, C. 2009. “Application of GA to Design LQR Controller for an Inverted Pendulum System,” In Robotics and Biomimetics, ROBIO 2008. IEEE International Conference, 22 - 25 February 2009, Bangkok, Thailand, p. 951-954.
  • 23. Hassani, K., Lee, W. S. 2014. “Optimal Tuning of Linear Quadratic Regulators Using Quantum Particle Swarm Optimization,” In Proceedings of the International Conference on Control, Dynamic Systems, and Robotics (CDSR’14), 14-15 May 2014, Ottawa, Ontario, Canada, paper no:59.
  • 24. Ata, B., Coban, R. 2015. “Artificial Bee Colony Algorithm Based Linear Quadratic Optimal Controller Design for a Nonlinear Inverted Pendulum,” International Journal of Intelligent Systems and Applications in Engineering, vol. 3 (1), p. 1-6.
  • 25. Wang, H., Zhou, H., Wang, D., Wen, S. 2013. “Optimization of LQR Controller for Inverted Pendulum System with Artificial Bee Colony Algorithm,” In Proceedings of the 2013 International Conference on Advanced Mechatronic Systems, 25-27 September, Luoyang, China, p. 158-162.
  • 26. Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M. 2005. The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, p. 1-57.
  • 27. Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. 2011. “The Bees Algorithm–a Novel Tool for Complex Optimisation,” In Intelligent Production Machines and Systems-2nd I* PROMS Virtual International Conference, 3-14 July 2006, Cardiff, UK.
  • 28. Pham, D. T., Kalyoncu, M. 2009. “Optimisation of a Fuzzy Logic Controller for a Flexible Single-Link Robot Arm Using the Bees Algorithm,” In 2009 7th IEEE International Conference on Industrial Informatics, 23 - 26 June 2009, Cardiff, UK., p. 475-480.
  • 29. Pham, D. T., Koc, E., Kalyoncu, M., Tınkır, M. 2008. “Hierarchical PID Controller Design for a Flexible Link Robot Manipulator Using the Bees Algorithm,” In Proceedings of 6th International Symposium on Intelligent Manufacturing Systems, 14-17 October 2008, Sakarya, Turkey, p. 757-765.
  • 30. Sen, M. A., Kalyoncu, M. 2015. "Optimisation of a PID Controller for an Inverted Pendulum Using the Bees Algorithm," Applied Mechanics and Materials, vol. 789-790, p. 1039-1044.
  • 31. Şen, M. A., Kalyoncu, M. 2016. “Optimal Tuning of a LQR Controller for an Inverted Pendulum Using The Bees Algorithm,” Jounal of Automation and Control Engineering, vol. 4 (5), p. 384-387.
  • 32. Pham, D. T., Castellani, M. 2013. “Benchmarking and Comparison of Nature-Inspired Population-Based Continuous Optimization Algorithms,” Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 18, p. 871-903.

ÇİFT TERS SARKAÇ SİSTEMİNİN DENGE VE KONUM KONTROLÜ İÇİN ARI ALGORİTMASI İLE LQR KONTROLCÜ PARAMETRELERİNİN TAYİNİ

Yıl 2016, Cilt: 57 Sayı: 679, 53 - 62, 30.08.2016

Öz

Ters sarkacın sisteminin dengelenmesine yönelik kontrol teorileri geliştirmek, bu alanda çalışan araştırmacılar arasında oldukça popüler bir konudur. Ters sarkaç sistemi, kararsız ve doğrusal olmayan
yapısı sayesinde mevcut kontrolcülerin performansının belirlenmesinde ve yeni kontrolcülerin tasarımında sıklıkla kullanılan bir sistemdir. Bu çalışmada, üç serbestlik dereceli çift ters sarkaç sisteminin
denge ve konum kontrolü için Arı Algoritması (AA) kullanılarak LQR kontrolcü tasarımı yapılmıştır.
Ön tasarımı yapılan LQR kontrolcüye ait parametreler (Q ve R matrisleri) Arı Algoritması ile optimize
edilerek LQR kontrolcü kazanç matrisi (K) elde edilmiştir. Sistemin modellenmesi, kontrol sisteminin tasarımı ve optimizasyon işlemleri MATLAB/Simulink programında gerçekleştirilmiştir. Çalışma
kapsamında sunulan yöntemin etkinliğini araştırmak amacıyla, Arı Algoritması parametreleri farklı
konfigürasyonlarda seçilerek üç ayrı optimizasyon işlemi gerçekleştirilmiştir. Elde edilen LQR kontrolcü kazanç matrislerinin sistem cevabı üzerindeki etkileri simüle edilmiş ve karşılaştırmalı sonuçlar
grafiksel olarak sunulmuştur

Kaynakça

  • 1. Nikolov, S., Nedev, V. 2016. “Bifurcation Analysis and Dynamic Behaviour of an Inverted Pendulum with Bounded Control,” Journal of Theoretical and Applied Mechanics, vol. 46 (1), p. 17-32.
  • 2. Bilgiç, H. H., Şen, M. A., Yapıcı, A., Kalyoncu, M. 2014. “Doğrusal Ters Sarkacın Denge Kontrolü İçin Yapay Sinir Ağı Tabanlı Bulanık Mantık & LQR Kontrolcü Tasarımı,” Otomatik Kontrol Ulusal Toplantısı (TOK 2014) (Poster), 14-17 Haziran 2015, İzmir, Otomatik Kontrol Ulusal Toplantısı Bildiriler Kitabı, Makina Teorisi Derneği, Ankara, s. 921-926
  • 3. Saidi, E., Hammi, Y., Douik, A. 2016. “Equivalence between PWA Formalism and MLD Formalism: Inverted Pendulum System Example,” International Journal of Applied Engineering Research, vol. 11 (2), p. 1353-1360.
  • 4. Bilgiç, H. H., Conker, Ç., Yavuz, H., Şen, M. A. 2015. “Sarkaç Tipi Bir Tepe Vincinin Kontrolüne Bulanık Yaklaşım,” Uluslararası Katılımlı 17. Makina Teorisi Sempozyumu, 14-17 Haziran 2015, İzmir.
  • 5. Mifsud, A., Benallegue, M., Lamiraux, F. 2016. “Stabilizationof a Compliant Humanoid Robot Using Only Inertial Measurement Units with a Viscoelastic Reaction Mass Pendulum Model,” Rapport LAAS, 16063, hal-01285643.
  • 6. Suzuki, Y., et al. 2012. "Intermittent Control with Ankle, Hip, and Mixed Strategies during Quiet Standing: A Theoretical Proposal Based on a Double Inverted Pendulum Model," Journal of Theoretical Biology, vol. 310, p. 55-79.
  • 7. Colobert, B., et al. 2006. "Force-Flate Based Computation of Ankle and Hip Strategies from Double-Inverted Pendulum Model," Clinical Biomechanics, vol. 21(4), p. 427-434.
  • 8. Nagasaki, T., Kajita, S., Yokoi, K., Kaneko, K., Hirukawa, H., Tanie, K. 2003. “Running Pattern Generation for a Humanoid Robot,” Journal-Robotics Society of Japan, vol. 21(8), p. 74-80.
  • 9. Poorhossein, A., Vahidian, K. A. 2010. “Design and Implementation of Sugeno Controller for Inverted Pendulum on a Cart System,” In IEEE 8th International Symposium on Intelligent Systems and Informatics, 10-11September 2010, Subotica, Serbia, p. 641-646.
  • 10. Kizir, S. 2008. “Doğrusal Olmayan Ters Sarkaç Sisteminin Tasarımı ve Kontrolü,” Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • 11. Boubaker, O. 2012. “The Inverted Pendulum: A Fundamental Benchmark in Control Theory and Robotics,” In Education and e-Learning Innovations (ICEELI), 2012 International Conference, 1-3 July 2012, Sousse, Tunus, p. 1-6.
  • 12. Wanli, Z., Guoxin, L., Lirong, W. 2014. “Research on the Control Method of Inverted Pendulum Based on Kalman Filter,” In Dependable, Autonomic and Secure Computing (DASC), IEEE 12th International Conference, 24-27 August 2014, Dalian, China, p. 520-523.
  • 13. Singh, N., Yadav, S. K. 2012. “Comparison of LQR and PD Controller for Stabilizing Double Inverted Pendulum System,” International Journal of Engineering, vol. 1 (12), p. 69-74.
  • 14. Bilgiç H. H., Conker Ç., Yavuz, H. 2016. “Çift Ters Sarkacın Denge Kontrolü İçin Yeni Bir Bulanık Mantık Kontrolcü Yaklaşımı,” International Conference on Natural Science and Engineering (ICNASE’16) 19-20 March 2016, Kilis, Turkey, p. 2899-2908.
  • 15. Bogdanov, A. 2004. “Optimal Control of a Double Inverted Pendulum on a Cart,” Oregon Health and Science University, Tech. Rep. CSE-04-006, OGI School of Science and Engineering, Beaverton, OR.
  • 16. Prasad, L. B., Tyagi, B., Gupta, H. O. 2011. “Optimal Control of Nonlinear Inverted Pendulum Dynamical System with Disturbance Input Using PID Controller & LQR,” In Control System, Computing and Engineering (ICCSCE), 2012 International Conference, 23-25 November 2012, Penang, p. 540-545.
  • 17. Quanser. 2012. Linear Double Inverted Pendulum Experiment User Manuel, Quanser Inc.
  • 18. Anderson, B. D. O., Moore, J. B. 1989. Optimal Control–Linear Quadratic Methods, ISBN: 0 – 13 – 638651 – 2, Prentice Hall.
  • 19. Amir, S., Basiri, S. O. 2011. “Optimal Design of LQR Weighting Matrices Based on Intelligent Optimization Methods,” International Journal of Intelligent Information Processing, vol. 2, p. 57–62.
  • 20. Zhang, J., Zhang, L., Xie, J. 2011. “Application of Memetic Algorithm in Control of Linear Inverted Pendulum,” IEEE International Conference on Cloud Computing and Intelligence Systems, 15-17 September 2011, Beijing, China, p. 103-107.
  • 21. Tijani, I. B., Akmeliawati, R., Abdullateef, A. I. 2013. “Control of an Inverted Pendulum Using MODE-Based Optimized LQR Controller,” IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 19 -21 June 2013, Melbourne, Australia, p. 1759-1764.
  • 22. Wongsathan, C., Sirima, C. 2009. “Application of GA to Design LQR Controller for an Inverted Pendulum System,” In Robotics and Biomimetics, ROBIO 2008. IEEE International Conference, 22 - 25 February 2009, Bangkok, Thailand, p. 951-954.
  • 23. Hassani, K., Lee, W. S. 2014. “Optimal Tuning of Linear Quadratic Regulators Using Quantum Particle Swarm Optimization,” In Proceedings of the International Conference on Control, Dynamic Systems, and Robotics (CDSR’14), 14-15 May 2014, Ottawa, Ontario, Canada, paper no:59.
  • 24. Ata, B., Coban, R. 2015. “Artificial Bee Colony Algorithm Based Linear Quadratic Optimal Controller Design for a Nonlinear Inverted Pendulum,” International Journal of Intelligent Systems and Applications in Engineering, vol. 3 (1), p. 1-6.
  • 25. Wang, H., Zhou, H., Wang, D., Wen, S. 2013. “Optimization of LQR Controller for Inverted Pendulum System with Artificial Bee Colony Algorithm,” In Proceedings of the 2013 International Conference on Advanced Mechatronic Systems, 25-27 September, Luoyang, China, p. 158-162.
  • 26. Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M. 2005. The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, p. 1-57.
  • 27. Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. 2011. “The Bees Algorithm–a Novel Tool for Complex Optimisation,” In Intelligent Production Machines and Systems-2nd I* PROMS Virtual International Conference, 3-14 July 2006, Cardiff, UK.
  • 28. Pham, D. T., Kalyoncu, M. 2009. “Optimisation of a Fuzzy Logic Controller for a Flexible Single-Link Robot Arm Using the Bees Algorithm,” In 2009 7th IEEE International Conference on Industrial Informatics, 23 - 26 June 2009, Cardiff, UK., p. 475-480.
  • 29. Pham, D. T., Koc, E., Kalyoncu, M., Tınkır, M. 2008. “Hierarchical PID Controller Design for a Flexible Link Robot Manipulator Using the Bees Algorithm,” In Proceedings of 6th International Symposium on Intelligent Manufacturing Systems, 14-17 October 2008, Sakarya, Turkey, p. 757-765.
  • 30. Sen, M. A., Kalyoncu, M. 2015. "Optimisation of a PID Controller for an Inverted Pendulum Using the Bees Algorithm," Applied Mechanics and Materials, vol. 789-790, p. 1039-1044.
  • 31. Şen, M. A., Kalyoncu, M. 2016. “Optimal Tuning of a LQR Controller for an Inverted Pendulum Using The Bees Algorithm,” Jounal of Automation and Control Engineering, vol. 4 (5), p. 384-387.
  • 32. Pham, D. T., Castellani, M. 2013. “Benchmarking and Comparison of Nature-Inspired Population-Based Continuous Optimization Algorithms,” Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 18, p. 871-903.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm icindekiler-sunuş
Yazarlar

Muhammed Arif Şen

Hasan Hüseyin Bilgiç

Mete Kalyoncu Bu kişi benim

Yayımlanma Tarihi 30 Ağustos 2016
Gönderilme Tarihi 4 Mayıs 2016
Kabul Tarihi 22 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 57 Sayı: 679

Kaynak Göster

APA Şen, M. A., Bilgiç, H. H., & Kalyoncu, M. (2016). ÇİFT TERS SARKAÇ SİSTEMİNİN DENGE VE KONUM KONTROLÜ İÇİN ARI ALGORİTMASI İLE LQR KONTROLCÜ PARAMETRELERİNİN TAYİNİ. Mühendis Ve Makina, 57(679), 53-62.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520