Araştırma Makalesi
BibTex RIS Kaynak Göster

Importance And Cost of Maintenance Practices In Wind Turbines

Yıl 2025, Cilt: 66 Sayı: 718, 173 - 188
https://doi.org/10.46399/muhendismakina.1537198

Öz

The daily increase in global demand for energy necessitates the use of renewable energy sources. Global warming, environmental pollution, and the depletion of fossil fuels require energy production sources to be clean and renewable. Wind energy is the most preferred one among the renewable energy technologies. Advancements in technology, increases in capacity factors, and decreases in initial investment costs contribute to the growing number of wind energy facilities. The most important component of wind energy facilities is the wind turbine. As with any operating device, wind turbines can face malfunctions for various reasons. Ensuring that turbines operate safely, efficiently, and with longevity is possible through regular maintenance and repairs. Mechanical and electrical malfunctions can cause interruptions in energy production and financial losses. Planned maintenance practices can ensure the continuity of energy production and prevent losses. This study examines the importance of maintenance practices and the cost of maintenance in wind energy facilities.

Kaynakça

  • Bayrak, M., Eric N., Küçüker, A., (2016). Detection of mechanical unbalanced faults in wind turbines by using electrical measurements , Journal of the Faculty of Engineering and Architecture of Gazi University, 31(3), 687-694. Doi: https://doi.org/10.17341/gazimmfd.258920
  • Boccard, N., (2009). Capacity Factor of Wind Power Realized Values vs. Estimates. Energy Policy, 37(7), 2679-2688.
  • Çanka Kılıç, F., (2012). Solar Energy, Its Recent Status In Türkiye And Productıon Technologıes. Mühendis ve Makine Dergisi, 614, 103-115.
  • Chen X., (2018). Fracture of wind turbine blades in operation—Part I: A comprehensive forensic investigation. Wind. Energy. 21, 1046–1063. https://doi.org/10.1002/we.2212
  • Dao, C., Kazemtabrizi, B., & Crabtree, C. (2019). Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy, 22(12), 1848–1871. https://doi.org/10.1002/we.2404.
  • Eric N., Bayrak M., (2015). Wind turbine mass and aerodynamic imbalances determination, International Journal of Engineering Sciences & Research Technology, 4 (2), 224-233.
  • Gong, X., Qiao, W., (2010). Simulation investigation of wind turbine imbalance faults. 2010 International Conference on Power System Technology, 1-7, Zhejiang, China.
  • Hansen M., (2008). The Importance Of Wınd Energy, The Sıtuatıon In The World and Türkiye. Fırat Üniversitesi Sosyal Bilimler Dergisi, 11(1), 1-26.
  • Herbert-Acero, J.F., Probst, O., Réthoré, P., Larsen, G.C., & Castillo-Villar, K.K. (2014). A Review of Methodological Approaches for the Design and Optimization of Wind Farms. Energies, 7, 6930-7016. Doi: https://doi.org/10.3390/en7116930
  • İlkılıç, C., (2009). Wind Energy Potential and Utilization in Türkiye, Mühendis ve Makine Dergisi, 50 (593), 26-32.
  • Jimmy, G., McDonald, A., & Carroll, J. (2020). Energy yield and operations and maintenance costs of parallel wind turbine powertrains. IEEE Transactions on Sustainable Energy, 11(2), 674–681. https://doi.org/10.1109/TSTE.2019.2902517.
  • Kahrobaee, S. & Asgarpoor, S., (2011). Risk-Based Failure Mode and Effect Analysis for Wind Turbines (RB-FMEA): North American Power Symposium (NAPS), Faculty Publications from the Department of Electrical and Computer Engineering, 172.
  • Koç, E., Şenel, M. C., (2013). The State of Energy in World and Türkiye - General Evaluation, Mühendis ve Makine Dergisi, 54 (639), 32-44.
  • Latiffianti, E.,Sheng, S. & Ding, Y., (2022). Wind Turbine Gearbox Failure Detection Through Cumulative Sum of Multivariate Time Series Data, Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.904622
  • Li, J.H., Jia, S., Ren, L. & Li, X. (2024), Research on wind turbines preventive maintenance strategies based on reliability and cost-effectiveness ratio, Industrial Lubrication and Tribology, 76(10), 1168-1176. https://doi.org/10.1108/ILT-05-2024-0153
  • Milborrow, D., (2010). Breaking down the cost of wind turbine maintenance. Wind Power, https://www.windpowermonthly.com/article/1010136/breaking-down-cost-wind- turbine-maintenance. (Date of Access: 24.03.2024)
  • Mishnaevsky L., Jr. (2019). Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renew. Energy. 140, 828–839. https://doi.org/10.1016/j.renene.2019.03.113
  • Mishnaevsky, L, Jr., (2020), Thomsen K. Costs of repair of wind turbine blades: Influence of technology aspects. Wind Energy. 23, 2247–2255. https://doi.org/10.1002/we.2552
  • Öztürk, H. K., (2020). Operation and Maintenance for Wind Turbines, Mühendis ve Makine Dergisi, 61(701), 262-279. https://doi.org/10.46399/muhendismakina.747092
  • Pérez, E., Ntaimo, L., & Ding, Y. (2015). Multi-component wind turbine modeling and simulation for wind farm operations and maintenance. Simulation, 91(4), 360–382. https://doi.org/10.1177/0037549715572490.
  • Ramlau R., Niebsch J., (2009). Imbalance estimation without test masses for wind turbines, ASME J. Sol Energy Eng., 131 (1): 011010. Doi: https://doi.org/10.1115/1.3028042
  • Republic of Türkiye Ministry of Energy and Natural Resources (2023). Energy Reports. https://enerji.gov.tr/info-bank-energy. (Date of Access: 09.12.2023)
  • Rezamand, M., Kordestani, M., Carriveau, R., D. S. . -K. Ting, M. E. Orchard & M. Saif, (2020). Critical Wind Turbine Components Prognostics: A Comprehensive Review, IEEE Transactions on Instrumentation and Measurement, 69(12), 9306-9328.
  • Santelo, T.N., de Oliveira, C.M.R., Maciel, C.D. (2022). Wind Turbine Failures Review & Trends. J. Control Autom Electr Syst, 33, 505–521. https://doi.org/10.1007/s40313-021-00789-8
  • Tchertchian, N., & Millet, D. (2022). Which eco-maintenance for renewable energy? A simulation model for optimising the choice of offshore wind farm maintenance vessel. Journal of Marine Engineering & Technology, 22(1), 1–11. https://doi.org/10.1080/20464177.2022.2044584
  • Wu B, Lang Y, Zargari N, Kouro S., (2011). Power Conversion and Control of Wind Energy Systems. Piscataway, NJ, USA: IEEE Press; John Wiley & Sons.
  • Yavuz, İ., Özbay, H., (2020). Installation and Maintenance Processes in Wind Turbines: The Case of Bandırma. M ü h . B i l . v e A r a ş . D e r g i s i , 2 ( 2 ), 5 8 - 6 8.
  • Doi: https://doi.org/10.46387/bjesr.800527
  • URL-1 : https://gwec.net/gwwo-23-27/ ( Date of Access: 22.01.2025)
  • URL-2 : https://www.alliedmarketresearch.com/wind-energy-market-A10536 ( Date of Access: 22.01.2025)
  • URL-3 : https://enerji.gov.tr/bilgi-merkezi-enerji-ruzgaren (Date of Access: 24.05.2024)
  • URL-4 : https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (Date of Access: 25.05.2024)
  • URL-5 : IRENA (International Renewable Energy Agency), “Wind Energy”, https://www.irena.org/wind (Date of Access: 27.06.2024)
  • URL-6 : https://www.long-intl.com/blog/wind-turbine-basics/ (Date of Access: 14.08.2024)
  • URL-7 : https://www.rasswind.com/tr/ruzgar-turbini-yildirim-hasar-tamiri--id (Date of Access: 04.08.2024)
  • URL8 : https://www.epdk.gov.tr/Detay/Icerik/3-0-72/yekdem (Date of Access: 24.06.2024)

Rüzgar Türbinlerinde Bakım Uygulamaları ve Bakım Maliyeti

Yıl 2025, Cilt: 66 Sayı: 718, 173 - 188
https://doi.org/10.46399/muhendismakina.1537198

Öz

Tüm dünyada enerjiye olan talebin günden güne artması yenilenebilir enerji kaynaklarının kullanımını zorunlu kılmaktadır. Küresel ısınma, çevre kirliliği, fosil yakıtların tükeniyor olması; enerji üretim kaynaklarının temiz ve yenilenebilir olmasını gerektirmektedir. Yenilenebilir enerji teknolojileri arasında rüzgar enerjisi en çok tercih edilen enerji teknolojisidir. Gelişen teknoloji, kapasite faktörlerinin her geçen gün artması, ilk yatırım maliyetlerinin azalması rüzgar enerjisi santrallerinin kurulumunu her geçen gün arttırmaktadır. Rüzgar enerji santrallerinin en önemli bileşeni olan rüzgar türbinleridir. Çalışan her cihaz gibi rüzgar türbinlerinde de çeşitli nedenlerle zaman zaman arızalar meydana gelmektedir. Türbinlerin uzun ömürlü, güvenli ve verimli şekilde çalışmaya devam edebilmesi, düzenli şekilde bakım ve onarımlarının yapılması ile mümkündür. Meydana gelebilecek mekanik ve elektriksel arızalar enerji üretiminde kesintiye ve maddi kayıplara sebep olmaktadır. Planlı bakım uygulamaları, enerji üretiminin devamlılığını ve kayıpları engelleyebilmeyi mümkün kılmaktadır. Bu çalışmada rüzgar enerji santrallerinde bakım uygulamalarının önemi ve bakım maliyeti incelenmiştir.

Kaynakça

  • Bayrak, M., Eric N., Küçüker, A., (2016). Detection of mechanical unbalanced faults in wind turbines by using electrical measurements , Journal of the Faculty of Engineering and Architecture of Gazi University, 31(3), 687-694. Doi: https://doi.org/10.17341/gazimmfd.258920
  • Boccard, N., (2009). Capacity Factor of Wind Power Realized Values vs. Estimates. Energy Policy, 37(7), 2679-2688.
  • Çanka Kılıç, F., (2012). Solar Energy, Its Recent Status In Türkiye And Productıon Technologıes. Mühendis ve Makine Dergisi, 614, 103-115.
  • Chen X., (2018). Fracture of wind turbine blades in operation—Part I: A comprehensive forensic investigation. Wind. Energy. 21, 1046–1063. https://doi.org/10.1002/we.2212
  • Dao, C., Kazemtabrizi, B., & Crabtree, C. (2019). Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy, 22(12), 1848–1871. https://doi.org/10.1002/we.2404.
  • Eric N., Bayrak M., (2015). Wind turbine mass and aerodynamic imbalances determination, International Journal of Engineering Sciences & Research Technology, 4 (2), 224-233.
  • Gong, X., Qiao, W., (2010). Simulation investigation of wind turbine imbalance faults. 2010 International Conference on Power System Technology, 1-7, Zhejiang, China.
  • Hansen M., (2008). The Importance Of Wınd Energy, The Sıtuatıon In The World and Türkiye. Fırat Üniversitesi Sosyal Bilimler Dergisi, 11(1), 1-26.
  • Herbert-Acero, J.F., Probst, O., Réthoré, P., Larsen, G.C., & Castillo-Villar, K.K. (2014). A Review of Methodological Approaches for the Design and Optimization of Wind Farms. Energies, 7, 6930-7016. Doi: https://doi.org/10.3390/en7116930
  • İlkılıç, C., (2009). Wind Energy Potential and Utilization in Türkiye, Mühendis ve Makine Dergisi, 50 (593), 26-32.
  • Jimmy, G., McDonald, A., & Carroll, J. (2020). Energy yield and operations and maintenance costs of parallel wind turbine powertrains. IEEE Transactions on Sustainable Energy, 11(2), 674–681. https://doi.org/10.1109/TSTE.2019.2902517.
  • Kahrobaee, S. & Asgarpoor, S., (2011). Risk-Based Failure Mode and Effect Analysis for Wind Turbines (RB-FMEA): North American Power Symposium (NAPS), Faculty Publications from the Department of Electrical and Computer Engineering, 172.
  • Koç, E., Şenel, M. C., (2013). The State of Energy in World and Türkiye - General Evaluation, Mühendis ve Makine Dergisi, 54 (639), 32-44.
  • Latiffianti, E.,Sheng, S. & Ding, Y., (2022). Wind Turbine Gearbox Failure Detection Through Cumulative Sum of Multivariate Time Series Data, Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.904622
  • Li, J.H., Jia, S., Ren, L. & Li, X. (2024), Research on wind turbines preventive maintenance strategies based on reliability and cost-effectiveness ratio, Industrial Lubrication and Tribology, 76(10), 1168-1176. https://doi.org/10.1108/ILT-05-2024-0153
  • Milborrow, D., (2010). Breaking down the cost of wind turbine maintenance. Wind Power, https://www.windpowermonthly.com/article/1010136/breaking-down-cost-wind- turbine-maintenance. (Date of Access: 24.03.2024)
  • Mishnaevsky L., Jr. (2019). Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renew. Energy. 140, 828–839. https://doi.org/10.1016/j.renene.2019.03.113
  • Mishnaevsky, L, Jr., (2020), Thomsen K. Costs of repair of wind turbine blades: Influence of technology aspects. Wind Energy. 23, 2247–2255. https://doi.org/10.1002/we.2552
  • Öztürk, H. K., (2020). Operation and Maintenance for Wind Turbines, Mühendis ve Makine Dergisi, 61(701), 262-279. https://doi.org/10.46399/muhendismakina.747092
  • Pérez, E., Ntaimo, L., & Ding, Y. (2015). Multi-component wind turbine modeling and simulation for wind farm operations and maintenance. Simulation, 91(4), 360–382. https://doi.org/10.1177/0037549715572490.
  • Ramlau R., Niebsch J., (2009). Imbalance estimation without test masses for wind turbines, ASME J. Sol Energy Eng., 131 (1): 011010. Doi: https://doi.org/10.1115/1.3028042
  • Republic of Türkiye Ministry of Energy and Natural Resources (2023). Energy Reports. https://enerji.gov.tr/info-bank-energy. (Date of Access: 09.12.2023)
  • Rezamand, M., Kordestani, M., Carriveau, R., D. S. . -K. Ting, M. E. Orchard & M. Saif, (2020). Critical Wind Turbine Components Prognostics: A Comprehensive Review, IEEE Transactions on Instrumentation and Measurement, 69(12), 9306-9328.
  • Santelo, T.N., de Oliveira, C.M.R., Maciel, C.D. (2022). Wind Turbine Failures Review & Trends. J. Control Autom Electr Syst, 33, 505–521. https://doi.org/10.1007/s40313-021-00789-8
  • Tchertchian, N., & Millet, D. (2022). Which eco-maintenance for renewable energy? A simulation model for optimising the choice of offshore wind farm maintenance vessel. Journal of Marine Engineering & Technology, 22(1), 1–11. https://doi.org/10.1080/20464177.2022.2044584
  • Wu B, Lang Y, Zargari N, Kouro S., (2011). Power Conversion and Control of Wind Energy Systems. Piscataway, NJ, USA: IEEE Press; John Wiley & Sons.
  • Yavuz, İ., Özbay, H., (2020). Installation and Maintenance Processes in Wind Turbines: The Case of Bandırma. M ü h . B i l . v e A r a ş . D e r g i s i , 2 ( 2 ), 5 8 - 6 8.
  • Doi: https://doi.org/10.46387/bjesr.800527
  • URL-1 : https://gwec.net/gwwo-23-27/ ( Date of Access: 22.01.2025)
  • URL-2 : https://www.alliedmarketresearch.com/wind-energy-market-A10536 ( Date of Access: 22.01.2025)
  • URL-3 : https://enerji.gov.tr/bilgi-merkezi-enerji-ruzgaren (Date of Access: 24.05.2024)
  • URL-4 : https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (Date of Access: 25.05.2024)
  • URL-5 : IRENA (International Renewable Energy Agency), “Wind Energy”, https://www.irena.org/wind (Date of Access: 27.06.2024)
  • URL-6 : https://www.long-intl.com/blog/wind-turbine-basics/ (Date of Access: 14.08.2024)
  • URL-7 : https://www.rasswind.com/tr/ruzgar-turbini-yildirim-hasar-tamiri--id (Date of Access: 04.08.2024)
  • URL8 : https://www.epdk.gov.tr/Detay/Icerik/3-0-72/yekdem (Date of Access: 24.06.2024)
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Eylem Yılmaz Ulu 0000-0001-6257-9845

Erken Görünüm Tarihi 21 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 22 Ağustos 2024
Kabul Tarihi 7 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 66 Sayı: 718

Kaynak Göster

APA Yılmaz Ulu, E. (2025). Importance And Cost of Maintenance Practices In Wind Turbines. Mühendis Ve Makina, 66(718), 173-188. https://doi.org/10.46399/muhendismakina.1537198

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520