Derleme
BibTex RIS Kaynak Göster

Mimaride Etkin Strüktürler Olarak Ahşap Izgara Kabuklar

Yıl 2021, Cilt: 6 Sayı: 2, 349 - 369, 31.08.2021
https://doi.org/10.26835/my.861916

Öz

Ahşap ızgara kabuklar, serbest biçimleri nedeniyle karmaşık bir tasarım ve uygulama sürecine sahip olmasına rağmen; geniş açıklıkları minimum malzeme ile geçen en etkin taşıyıcı sistemlerden biridir. Çalışmada ahşap ızgara kabuk örneklerinin geçmişten günümüze gelişiminin, olumlu, olumsuz yönlerinin ve iki farklı tür (elastik ve rijit) ahşap ızgara kabuğun incelenmesi ve karşılaştırılması amaçlanmıştır. Bu kapsamda, inşa edildiği dönemde; tasarım ve uygulama açısından yeniliklere öncülük eden, farklı özelliklere sahip ahşap ızgara kabuk örnekleri seçilerek; bu örneklerin, tasarım, yapım yöntemi ve elemanları ile form oluşturma yöntemlerine ait verileri tablolar halinde sunulmuştur. Elde edilen sonuçlar ve yapılan değerlendirmelere göre, ahşap ızgara kabukların mimari ve yapısal açıdan gelişimine paralel olarak öneminin de giderek arttığı görülmektedir. Formun karmaşıklığı günümüzde sınırlayıcı bir faktör olarak görülmezken, yapısal karmaşıklığın artmasına bağlı olarak üretim sürecindeki zorluklar ve artan maliyet ahşap ızgara kabuk örneklerini müze, sergi salonları, spor alanları, vb. gibi sembolik yapılarla sınırlandırmıştır. Gelecekte, ahşap ızgara kabukların farklı konstrüksiyonları bir arada kullanan hibrid sistemler şeklinde uygulanabileceği öngörülmektedir.

Kaynakça

  • Ağırbaş, A. (2019). A Physics-Based Design Method Of Gridshell Systems: Optimization Of Form and Construction Cost. (Doktora tezi). Yaşar Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Avelino, R., Baverel, O., & Lebée, A. (2019). Design Strategies for Gridshells with Singularities. Journal of the International Association for Shell and Spatial Structures, 60, 189–200. https://doi.org/10.20898/j.iass.2019.201.023
  • Charest, P., Potvin, A., Demers, C. M. H., & Ménard, S. (2019). Assessing the complexity of timber gridshells in architecture through shape, structure, and material classification. BioResources, 14(1), 1364–1378. https://doi.org/10.15376/biores.14.1.1364-1378
  • Charest, P., Shepherd, P., Harris, R., Potvin, andré, Demers, C., & Ménard, S. (2019). Patchwork Gridshells: Using Modularity to Facilitate Prefabrication and Simplify Construction. Journal of the International Association for Shell and Spatial Structures, 60, 176–188. https://doi.org/10.20898/j.iass.2019.201.025
  • Chilton, J., & Tang, G. (2016). Timber Gridshells Architecture, Structure and Craft. New York: Routledge.
  • Collins, M., & Cosgrove, T. (2016). A Review of the State of the Art of Timber Gridshell Design and Construction. In Civil Engineering Research in Ireland. Erişim adresi http://hdl.handle.net/10344/5192
  • D’Amico, B. (2015). Timber Grid-shell Structures : form-finding, analysis and optimisation. (Doctoral dissertation). Edinburgh Napier University. https://doi.org/S0002939400009594 [pii]
  • Demirbaş, B., & Girgin, Z. C. (2019). Çubuk Ağı Ahşap Kubbeler. Aurum Mühendislik Sistemleri ve Mimarlık Dergisi, 3(1), 9–21.
  • Fernandes, J. G., Kirkegaard, P. H., & Branco, J. M. (2016). Tectonic Design of Timber Gridshells (pp. 2–3). Vienna, Austria.
  • Fritzsche, J. C. (2013). Gridshell efficiency optimization Optimizing efficiency form- & grid-configuration through iterative approximation and minimization strain energy. (Master's thesis). Eindhoven University of Technology.
  • Ghiyasinasab, M., Lehoux, N., & Ménard, S. (2017). Production phases and market for timber gridshell structures: A state-of-the-art review. BioResources, 12(4), 9538–9555. https://doi.org/10.15376/biores.12.4.Ghiyasinasab
  • Grönquist, P., Panchadcharam, P., Wood, D., Menges, A., Rüggeberg, M., & Wittel, F. K. (2020). Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 7(7). https://doi.org/10.1098/rsos.192210
  • Haddal Mork, J., Dyvik, S., Manum, B., Rønnquist, A., & Labonnote, N. (2016). Introducing the segment lath -A simplified modular timber gridshell built in Trondheim Norway.
  • Happold, E., & Liddel, I. W. (1975). Timber lattice roof for the Mannheim Bundesgartenschau. The Structural Engineer, 53(3), 99–135.
  • Harris, R., Kelly, O., & Dickson, M. (2003). Downland gridshell - An innovation in timber design. Proceedings of The Institution of Civil Engineers-Civil Engineering - Proc Inst Civil Eng-Civil Eng, 156, 26–33. https://doi.org/10.1680/cien.156.1.26.36752
  • Harris, R., Romer, J., Kelly, O., & Johnson, S. (2003). Design and construction of the Downland Gridshell. Building Research and Information, 31(6), 427–454. https://doi.org/10.1080/0961321032000088007
  • Jeska, S., Hascher, R., & Pascha, K. S. (2014). Emergent Timber Technologies : Materials, Structures, Engineering, Projects. Basel/Berlin/Boston: Birkhäuser. Erişim adresi http://www.msgsu.edu.tr/tr-TR/universite-disindan-elektronik-kaynaklara-erisim/2023/Page.aspx
  • Larsson, S. (2018). Design Implications of Rigid Timber Gridshells: A Method for the Planning and Manufacture of Load-carrying, Rigid, Freeform Structures of Timber. (Master's thesis). Chalmer University of Technology.
  • Liddell, I. (2015). Frei Otto and the development of gridshells. In: Case Studies in Structural Engineering. (Case Studies in Structural Engineering, December 01, 2015, 4:39-49), 43. https://doi.org/10.1016/j.csse.2015.08.001
  • Liuti, A., & Pugnale, A. (2015). Erection of post-formed gridshells by means of inflatable membrane technology. https://doi.org/10.13140/RG.2.2.20637.31202
  • Merrick, J., & Harris, R. (2006). Glenn Howells / Savill Building. Architect’s Journal, 224(1), 25–39.
  • Naicu, D. (2012). Geometry and Performance of Timber Gridshells. (Master's thesis). The University of Bath. Erişim adresi http://opus.bath.ac.uk/34264/
  • Naicu, D., Harris, R., & Williams, C. J. K. (2014). Timber gridshells: Design methods and their application to a temporary pavilion. Quebec City, Canada. Erişim adresi https://www.researchgate.net/publication/264539965
  • Paoli, C. (2007). Past and Future of Grid Shell Structures. (Master's thesis). Massachusetts Institute Of Technology. Erişim adresi http://hdl.handle.net/1721.1/39277
  • Quinn, G., & Gengnagel, C. (2014). A review of elastic grid shells, their erection methods and the potential use of pneumatic formwork. In WIT Transactions on the Built Environment (Vol. 136, pp. 129–144). https://doi.org/10.2495/MAR140111
  • Quinn, Gregory, & Gengnagel, C. (2015). Simulation Methods for the Erection of Strained Grid Shells Via Pneumatic Falsework. https://doi.org/10.1007/978-3-319-24208-8_22
  • Quinn, Gregory, Gengnagel, C., & Williams, C. (2015). Comparison of Erection Methods for Long-Span Strained Grid Shells.
  • Ruseler, T. T. (2017). A Structural Concept for Free-Form Timber Structures. (Master's thesis). Delft University of Technology.
  • Songel, J. M. (2020). Sustainability lessons from vernacular architecture in Frei Otto’s work: tents and gridshells. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-1–2, 233 – 240. https://doi.org/https://d0192efdd77670f7012d3fece2c7c0fc720c897f.vetisonline.com/10.5194/isprs-archives-XLIV-M-1-2020-233-2020
  • Tang, G., Chilton, J. C., & Beccarelli, P. (2013). Progressive Development of Timber Gridshell Design, Analysis and Construction: Paper 1387.
  • Türkçü, Ç. (2017). Çağdaş Taşıyıcı Sistemler. İstanbul: Birsen Yayınevi. Erişim adresi http://www.msgsu.edu.tr/tr-TR/universite-disindan-elektronik-kaynaklara-erisim/2023/Page.aspx
  • Vardar Öz, Ö. M. (2012). Tek Tabakalı Uzay Kafes Sistemlerin Tasarımı. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A. A., Gramazio, F., & Kohler, M. (2016). Robotic timber construction - Expanding additive fabrication to new dimensions. Automation in Construction, 61. https://doi.org/10.1016/j.autcon.2015.09.011
  • Yılmaz, D. G. (2011). Ahşap Kompozit Elemanlarla Oluşturulmuş Geniş Açıklıklı Sistemlerin İncelenmesi. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Url-1. 18 Şubat 2021 tarihinde https://arquitecturaviva.com/works/pabellon-de-japon-en-expo-2000-9 adresinden alındı.
  • Url-2. 29 Ekim 2020 tarihinde https://www.archdaily.com/490141/centre-pompidou-metz-shigeru-ban-architects adresinden alındı.
  • Url-3. 18 Şubat 2021 tarihinde http://architectuul.com/architecture/nine-bridges adresinden alındı.
  • Url-4. 13 Kasım 2020 tarihinde http://shells.princeton.edu/Mann2.html adresinden alındı.

Timber Gridshells as Effective Structures in Architecture

Yıl 2021, Cilt: 6 Sayı: 2, 349 - 369, 31.08.2021
https://doi.org/10.26835/my.861916

Öz

Although timber gridshells have a complex design and construction process due to their free form; it is one of the most efficient structural systems to cover large-spans with minimum material. The study has aimed to analyze the evolution of timber gridshells over time, positive and negative aspects of using this system and to compare the samples of elastic and rigid gridshell structures. In this context, timber gridshell samples which owned unique design and constructional features during the period when they were built have been selected. Afterwards, design and construction methods and elements used, also form decision methods have been summarised in tables. According to the results obtained and the evaluations made, it has been seen that the importance of the timber grid shells is increasing in parallel with the architectural and structural development. Although the complexity of the form is not a limiting factor today, the difficulties in the production process and the increasing cost due to the increase in structural complexity have limited the timber gridshell samples to symbolic structures such as museums, exhibition halls, sports fields, etc. It is expected that timber gridshells can be applied as hybrid systems that use different constructions together in the future.

Kaynakça

  • Ağırbaş, A. (2019). A Physics-Based Design Method Of Gridshell Systems: Optimization Of Form and Construction Cost. (Doktora tezi). Yaşar Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Avelino, R., Baverel, O., & Lebée, A. (2019). Design Strategies for Gridshells with Singularities. Journal of the International Association for Shell and Spatial Structures, 60, 189–200. https://doi.org/10.20898/j.iass.2019.201.023
  • Charest, P., Potvin, A., Demers, C. M. H., & Ménard, S. (2019). Assessing the complexity of timber gridshells in architecture through shape, structure, and material classification. BioResources, 14(1), 1364–1378. https://doi.org/10.15376/biores.14.1.1364-1378
  • Charest, P., Shepherd, P., Harris, R., Potvin, andré, Demers, C., & Ménard, S. (2019). Patchwork Gridshells: Using Modularity to Facilitate Prefabrication and Simplify Construction. Journal of the International Association for Shell and Spatial Structures, 60, 176–188. https://doi.org/10.20898/j.iass.2019.201.025
  • Chilton, J., & Tang, G. (2016). Timber Gridshells Architecture, Structure and Craft. New York: Routledge.
  • Collins, M., & Cosgrove, T. (2016). A Review of the State of the Art of Timber Gridshell Design and Construction. In Civil Engineering Research in Ireland. Erişim adresi http://hdl.handle.net/10344/5192
  • D’Amico, B. (2015). Timber Grid-shell Structures : form-finding, analysis and optimisation. (Doctoral dissertation). Edinburgh Napier University. https://doi.org/S0002939400009594 [pii]
  • Demirbaş, B., & Girgin, Z. C. (2019). Çubuk Ağı Ahşap Kubbeler. Aurum Mühendislik Sistemleri ve Mimarlık Dergisi, 3(1), 9–21.
  • Fernandes, J. G., Kirkegaard, P. H., & Branco, J. M. (2016). Tectonic Design of Timber Gridshells (pp. 2–3). Vienna, Austria.
  • Fritzsche, J. C. (2013). Gridshell efficiency optimization Optimizing efficiency form- & grid-configuration through iterative approximation and minimization strain energy. (Master's thesis). Eindhoven University of Technology.
  • Ghiyasinasab, M., Lehoux, N., & Ménard, S. (2017). Production phases and market for timber gridshell structures: A state-of-the-art review. BioResources, 12(4), 9538–9555. https://doi.org/10.15376/biores.12.4.Ghiyasinasab
  • Grönquist, P., Panchadcharam, P., Wood, D., Menges, A., Rüggeberg, M., & Wittel, F. K. (2020). Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 7(7). https://doi.org/10.1098/rsos.192210
  • Haddal Mork, J., Dyvik, S., Manum, B., Rønnquist, A., & Labonnote, N. (2016). Introducing the segment lath -A simplified modular timber gridshell built in Trondheim Norway.
  • Happold, E., & Liddel, I. W. (1975). Timber lattice roof for the Mannheim Bundesgartenschau. The Structural Engineer, 53(3), 99–135.
  • Harris, R., Kelly, O., & Dickson, M. (2003). Downland gridshell - An innovation in timber design. Proceedings of The Institution of Civil Engineers-Civil Engineering - Proc Inst Civil Eng-Civil Eng, 156, 26–33. https://doi.org/10.1680/cien.156.1.26.36752
  • Harris, R., Romer, J., Kelly, O., & Johnson, S. (2003). Design and construction of the Downland Gridshell. Building Research and Information, 31(6), 427–454. https://doi.org/10.1080/0961321032000088007
  • Jeska, S., Hascher, R., & Pascha, K. S. (2014). Emergent Timber Technologies : Materials, Structures, Engineering, Projects. Basel/Berlin/Boston: Birkhäuser. Erişim adresi http://www.msgsu.edu.tr/tr-TR/universite-disindan-elektronik-kaynaklara-erisim/2023/Page.aspx
  • Larsson, S. (2018). Design Implications of Rigid Timber Gridshells: A Method for the Planning and Manufacture of Load-carrying, Rigid, Freeform Structures of Timber. (Master's thesis). Chalmer University of Technology.
  • Liddell, I. (2015). Frei Otto and the development of gridshells. In: Case Studies in Structural Engineering. (Case Studies in Structural Engineering, December 01, 2015, 4:39-49), 43. https://doi.org/10.1016/j.csse.2015.08.001
  • Liuti, A., & Pugnale, A. (2015). Erection of post-formed gridshells by means of inflatable membrane technology. https://doi.org/10.13140/RG.2.2.20637.31202
  • Merrick, J., & Harris, R. (2006). Glenn Howells / Savill Building. Architect’s Journal, 224(1), 25–39.
  • Naicu, D. (2012). Geometry and Performance of Timber Gridshells. (Master's thesis). The University of Bath. Erişim adresi http://opus.bath.ac.uk/34264/
  • Naicu, D., Harris, R., & Williams, C. J. K. (2014). Timber gridshells: Design methods and their application to a temporary pavilion. Quebec City, Canada. Erişim adresi https://www.researchgate.net/publication/264539965
  • Paoli, C. (2007). Past and Future of Grid Shell Structures. (Master's thesis). Massachusetts Institute Of Technology. Erişim adresi http://hdl.handle.net/1721.1/39277
  • Quinn, G., & Gengnagel, C. (2014). A review of elastic grid shells, their erection methods and the potential use of pneumatic formwork. In WIT Transactions on the Built Environment (Vol. 136, pp. 129–144). https://doi.org/10.2495/MAR140111
  • Quinn, Gregory, & Gengnagel, C. (2015). Simulation Methods for the Erection of Strained Grid Shells Via Pneumatic Falsework. https://doi.org/10.1007/978-3-319-24208-8_22
  • Quinn, Gregory, Gengnagel, C., & Williams, C. (2015). Comparison of Erection Methods for Long-Span Strained Grid Shells.
  • Ruseler, T. T. (2017). A Structural Concept for Free-Form Timber Structures. (Master's thesis). Delft University of Technology.
  • Songel, J. M. (2020). Sustainability lessons from vernacular architecture in Frei Otto’s work: tents and gridshells. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-1–2, 233 – 240. https://doi.org/https://d0192efdd77670f7012d3fece2c7c0fc720c897f.vetisonline.com/10.5194/isprs-archives-XLIV-M-1-2020-233-2020
  • Tang, G., Chilton, J. C., & Beccarelli, P. (2013). Progressive Development of Timber Gridshell Design, Analysis and Construction: Paper 1387.
  • Türkçü, Ç. (2017). Çağdaş Taşıyıcı Sistemler. İstanbul: Birsen Yayınevi. Erişim adresi http://www.msgsu.edu.tr/tr-TR/universite-disindan-elektronik-kaynaklara-erisim/2023/Page.aspx
  • Vardar Öz, Ö. M. (2012). Tek Tabakalı Uzay Kafes Sistemlerin Tasarımı. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A. A., Gramazio, F., & Kohler, M. (2016). Robotic timber construction - Expanding additive fabrication to new dimensions. Automation in Construction, 61. https://doi.org/10.1016/j.autcon.2015.09.011
  • Yılmaz, D. G. (2011). Ahşap Kompozit Elemanlarla Oluşturulmuş Geniş Açıklıklı Sistemlerin İncelenmesi. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Url-1. 18 Şubat 2021 tarihinde https://arquitecturaviva.com/works/pabellon-de-japon-en-expo-2000-9 adresinden alındı.
  • Url-2. 29 Ekim 2020 tarihinde https://www.archdaily.com/490141/centre-pompidou-metz-shigeru-ban-architects adresinden alındı.
  • Url-3. 18 Şubat 2021 tarihinde http://architectuul.com/architecture/nine-bridges adresinden alındı.
  • Url-4. 13 Kasım 2020 tarihinde http://shells.princeton.edu/Mann2.html adresinden alındı.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Selen Koç 0000-0002-0299-2205

N. Volkan Gür 0000-0001-8810-5023

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 2

Kaynak Göster

APA Koç, S., & Gür, N. V. (2021). Mimaride Etkin Strüktürler Olarak Ahşap Izgara Kabuklar. Mimarlık Ve Yaşam, 6(2), 349-369. https://doi.org/10.26835/my.861916

16299  16302  16303  18949   21920