Derleme
BibTex RIS Kaynak Göster

Artificial Intelligence in Pedagogical Processes: a Transformative Perspective on Teaching Art History

Yıl 2024, Cilt: 6 Sayı: 2, 914 - 939, 31.12.2024

Öz

The paper delves into the transformative potential of artificial intelligence (AI) in the context of art history education. It adopts a comprehensive review approach to examine the multifaceted applications and impacts of AI, focusing particularly on personalized learning, automated assessment, and stimulating creativity. By synthesizing existing literature and studies, the research provides practical insights into the effective use of AI tools in education and art, supplemented by illustrative examples to guide future research endeavours. One of the key focal points of the paper is the role of AI in ushering a new era in education. It emphasizes the capacity of AI to offer personalized learning experiences, diversify teaching methods, and streamline education management processes. Furthermore, the paper addresses ethical considerations in AI-driven art production and its potential to reshape art history education. By illuminating the vast potential of AI, the study seeks to provide recommendations for the more effective and ethical use of AI in education and art. The research also features a case study from abroad, which serves to illustrate the practical application of AI tools in art history education. This real-world example adds a layer of concreteness to the theoretical exploration of AI's impact on the field of art history education, enhancing the paper's overall credibility and relevance. In conclusion, the paper paints a compelling picture of the transformative potential of AI in art history education. By providing practical insights, illustrative examples, and addressing ethical considerations, the study seeks to pave the way for the more effective and ethical use of AI in the realms of education and art.

Kaynakça

  • Aaron. (2023). Aaron's Home Page. https://www.aaronshome.com/aaron .
  • Albar Mansoa, P. J. (2023). La inteligencia artificial de generación de imagenes en arte: ¿Como impacta en el futuro del alumnado en Bellas Artes? ENCUENTROS. Revista de ciencias humanas, teoría social y pensamiento crítico., 20 (Universidad Nacional Experimental Rafael Maria Baralt.), 145-164. https://doi.org/10.5281/zenodo.10052355
  • Alpers, P. (1972). Ut pictura noesis? Criticism in literary studies and art history. In New Directions in Literary History (199-220). Routledge.
  • Avci, H., Pedersen, S., & Thomas, A. (2020). Writing a formal analysis of art in a game-based learning environment. In EdMedia and Innovate Learning (669-671). Association for the Advancement of Computing in Education (AACE).
  • Baker, R. S. J., & Yacef, K. (2010). Educational data mining and learning analytics. International Journal of Technology in Education, 13(5), 347-368.
  • Black, C. V., & Barringer, T. (2022). Decolonizing art and empire. The Art Bulletin, 104 (1), 6–20. https://doi.org/10.1080/00043079.2021.1970479
  • Brusilovsky, P. (2001). Adaptive hypermedia. User modelling and user-adapted interaction, 11(1-2), 87-116.
  • Carpino, K., & Hutson, J. (2024). A new canvas of learning: Enhancing formal analysis skills in AP art history through AI-generated Islamic art. Forum for Educational Studies, 2 (2), 1228. https://doi.org/10.59400/fes.v2i2.1228
  • Cohen, P. (2016). Harold Cohen and AARON. AI Magazine, 37(4), 63-66. https://doi.org/10.1609/aimag.v37i4.2695
  • Cohn, G. (2018). AI art at Christie's sells for $432,500. https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
  • Dehouche, N. (2021). Implicit stereotypes in pre-trained classifiers. IEEE Access, 9, 167936-167947. https://doi.org/10.1109/ACCESS.2021.3136898
  • Dehouche, N., & Dehouche, K. (2023). What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon, 9(6), e16757. https://doi.org/10.1016/j.heliyon.2023.e16757
  • Fallis, D. (2021). The epistemic threat of deepfakes. Philos. Technol. 34, 623–643. https://doi.org/10.1007/s13347-020-00419-2
  • Franceschelli, G., & Musolesi, M. (2022). Copyright in generative deep learning. Data & Policy. 4, e17-18. https://doi.org/10.1017/dap.2022.10
  • Hutson, J. (2024). Integrating art and AI: Evaluating the educational impact of AI tools in digital art history learning. Forum for Art Studies. 1(1), 393.
  • Hutson, J., & Robertson, B. (2023). Exploring the educational potential of AI generative art in 3D design fundamentals: A case study on prompt engineering and creative workflows. Global Journal of Human-Social Sciences, 23(2), 485.
  • Jindong, G., Zhen, H., Shuo, C., Ahmad, B., Bailan, H., Gengyuan, Z., Ruotong, L., Yao, Q., Volker, T., & Philip, T. (2023). A systematic survey of prompt engineering on vision-language foundation models. arXiv:2307.12980 [cs.CV], https://doi.org/10.48550/arXiv.2307.12980
  • Kutis, B. (2020). Scaffolding the formal analysis assignment in art history courses to promote learning. Journal of Teaching and Learning with Technology, 9(1), 30-35. https://doi.org/10.14434/jotlt.v9i1.29162
  • Mordvintsev, A., Olah, C., & Tyka, M. (2015, July 1). Deepdream-a code example for visualizing neural networks. https://research.google/blog/deepdream-a-code-example-for-visualizing-neural-networks/
  • Peşman, H., & Özdemir, E. (2019). The effects of artificial intelligence supported education systems on student success. The Journal of Social Sciences Research, 10(35), 261-272.
  • Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. International Conference on Machine Learning.
  • Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image Generation with CLIP Latents. ArXiv, abs/2204.06125.
  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution Image Synthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52688.2022.01042
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd Ed.). Pearson Education.
  • Siemens, G., & Baker, R. S. J. (2012). Learning analytics and educational innovation. International Journal of Technology in Education, 15(1), 3-8. https://doi.org/10.1145/2330601.2330661
  • Sims, K. (1992). Choreographed image flow. The Journal of Visualization and Computer Animation, 3(1), 31-43. https://doi.org/10.1002/vis.4340030106
  • Wiezenbaum, J. (1976). Computer power and human reason: from judgment to calculation. W. H. Freeman and Company.
  • Zullich, M., Macovaz, V., Pinna, G., & Pellegrino, F. A. (2023). An artificial intelligence system for automatic recognition of punches in fourteenth-century panel painting. IEEE, 11, 5864-5883. doi: 10.1109/ACCESS.2023.3236502

Pedagojik Süreçlerde Yapay Zekâ: Sanat Tarihi Öğretiminde Dönüştürücü Bir Bakış

Yıl 2024, Cilt: 6 Sayı: 2, 914 - 939, 31.12.2024

Öz

Bu makale, yapay zekanın (YZ) sanat tarihi eğitimi alanındaki dönüştürücü potansiyelini derinlemesine incelemektedir. YZ'nin kişiselleştirilmiş öğrenme deneyimleri sunma, değerlendirme süreçlerini otomatikleştirme ve öğrencilerin yaratıcılıklarını destekleme gibi çok yönlü uygulamaları ve etkileri üzerinde durmaktadır. Kapsamlı bir literatür taraması yoluyla, araştırma, eğitim ve sanat alanlarında YZ araçlarının etkili kullanımına dair pratik öneriler getirmektedir. Ayrıca, gelecekteki çalışmalar için yönlendirici örnekler de sunmaktadır. Makalenin en önemli bulgularından biri, YZ'nin eğitimde yeni bir çağ başlatma potansiyelidir. YZ, öğrencilerin kişisel öğrenme hızlarına ve ilgi alanlarına uygun içerikler sunarak öğrenmeyi daha etkili hale getirebilir. Öğretmenlerin de değerlendirme süreçlerindeki yükünü azaltarak, daha yaratıcı ve öğrenci merkezli etkinliklere odaklanmalarını sağlayabilir. Ayrıca, YZ algoritmaları sayesinde öğrencilerin sanat eserlerini analiz etme ve yorumlama becerileri geliştirilebilir. Ancak, YZ'nin kullanımıyla birlikte bazı etik kaygılar da ortaya çıkmaktadır. Örneğin, YZ algoritmalarının önyargılı olabileceği ve bu durumun öğrencilerin değerlendirilmesinde adaletsizliğe yol açabileceği endişesi gibi. Bu nedenle, YZ'nin eğitimde kullanımı sırasında etik ilkelerin gözetilmesi büyük önem taşımaktadır. Makalede yer alan bir vaka çalışması, YZ araçlarının sanat tarihi eğitiminde pratik uygulamalarını somut bir şekilde göstermektedir. Bu örnek, YZ'nin teorik potansiyelinin gerçek hayatta nasıl uygulanabileceğine dair önemli ipuçları sunmaktadır. Örneğin, öğrencilerin sanal müzeleri keşfetmeleri, sanat eserlerini farklı açılardan incelemeleri ve hatta kendi dijital sanat eserlerini yaratmaları gibi etkinlikler, YZ sayesinde mümkün hale gelmektedir. Sonuç olarak, bu makale yapay zekanın sanat tarihi eğitiminde büyük bir dönüşüm potansiyeli taşıdığını gösterir. YZ, öğrencilerin daha aktif ve etkili bir şekilde öğrenmelerine olanak tanırken, aynı zamanda öğretmenlerin de daha yaratıcı ve öğrenci merkezli bir yaklaşım benimsemelerine yardımcı olabilir. Ancak, YZ'nin etik kullanımı ve potansiyel risklerin yönetilmesi konusunda dikkatli olunmalıdır. Gelecekte, YZ'nin sanat tarihi eğitimindeki rolünün daha da artacağı ve bu alanın gelişimine önemli katkılar sağlayacağı öngörülmektedir.

Kaynakça

  • Aaron. (2023). Aaron's Home Page. https://www.aaronshome.com/aaron .
  • Albar Mansoa, P. J. (2023). La inteligencia artificial de generación de imagenes en arte: ¿Como impacta en el futuro del alumnado en Bellas Artes? ENCUENTROS. Revista de ciencias humanas, teoría social y pensamiento crítico., 20 (Universidad Nacional Experimental Rafael Maria Baralt.), 145-164. https://doi.org/10.5281/zenodo.10052355
  • Alpers, P. (1972). Ut pictura noesis? Criticism in literary studies and art history. In New Directions in Literary History (199-220). Routledge.
  • Avci, H., Pedersen, S., & Thomas, A. (2020). Writing a formal analysis of art in a game-based learning environment. In EdMedia and Innovate Learning (669-671). Association for the Advancement of Computing in Education (AACE).
  • Baker, R. S. J., & Yacef, K. (2010). Educational data mining and learning analytics. International Journal of Technology in Education, 13(5), 347-368.
  • Black, C. V., & Barringer, T. (2022). Decolonizing art and empire. The Art Bulletin, 104 (1), 6–20. https://doi.org/10.1080/00043079.2021.1970479
  • Brusilovsky, P. (2001). Adaptive hypermedia. User modelling and user-adapted interaction, 11(1-2), 87-116.
  • Carpino, K., & Hutson, J. (2024). A new canvas of learning: Enhancing formal analysis skills in AP art history through AI-generated Islamic art. Forum for Educational Studies, 2 (2), 1228. https://doi.org/10.59400/fes.v2i2.1228
  • Cohen, P. (2016). Harold Cohen and AARON. AI Magazine, 37(4), 63-66. https://doi.org/10.1609/aimag.v37i4.2695
  • Cohn, G. (2018). AI art at Christie's sells for $432,500. https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
  • Dehouche, N. (2021). Implicit stereotypes in pre-trained classifiers. IEEE Access, 9, 167936-167947. https://doi.org/10.1109/ACCESS.2021.3136898
  • Dehouche, N., & Dehouche, K. (2023). What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon, 9(6), e16757. https://doi.org/10.1016/j.heliyon.2023.e16757
  • Fallis, D. (2021). The epistemic threat of deepfakes. Philos. Technol. 34, 623–643. https://doi.org/10.1007/s13347-020-00419-2
  • Franceschelli, G., & Musolesi, M. (2022). Copyright in generative deep learning. Data & Policy. 4, e17-18. https://doi.org/10.1017/dap.2022.10
  • Hutson, J. (2024). Integrating art and AI: Evaluating the educational impact of AI tools in digital art history learning. Forum for Art Studies. 1(1), 393.
  • Hutson, J., & Robertson, B. (2023). Exploring the educational potential of AI generative art in 3D design fundamentals: A case study on prompt engineering and creative workflows. Global Journal of Human-Social Sciences, 23(2), 485.
  • Jindong, G., Zhen, H., Shuo, C., Ahmad, B., Bailan, H., Gengyuan, Z., Ruotong, L., Yao, Q., Volker, T., & Philip, T. (2023). A systematic survey of prompt engineering on vision-language foundation models. arXiv:2307.12980 [cs.CV], https://doi.org/10.48550/arXiv.2307.12980
  • Kutis, B. (2020). Scaffolding the formal analysis assignment in art history courses to promote learning. Journal of Teaching and Learning with Technology, 9(1), 30-35. https://doi.org/10.14434/jotlt.v9i1.29162
  • Mordvintsev, A., Olah, C., & Tyka, M. (2015, July 1). Deepdream-a code example for visualizing neural networks. https://research.google/blog/deepdream-a-code-example-for-visualizing-neural-networks/
  • Peşman, H., & Özdemir, E. (2019). The effects of artificial intelligence supported education systems on student success. The Journal of Social Sciences Research, 10(35), 261-272.
  • Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. International Conference on Machine Learning.
  • Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image Generation with CLIP Latents. ArXiv, abs/2204.06125.
  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution Image Synthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52688.2022.01042
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd Ed.). Pearson Education.
  • Siemens, G., & Baker, R. S. J. (2012). Learning analytics and educational innovation. International Journal of Technology in Education, 15(1), 3-8. https://doi.org/10.1145/2330601.2330661
  • Sims, K. (1992). Choreographed image flow. The Journal of Visualization and Computer Animation, 3(1), 31-43. https://doi.org/10.1002/vis.4340030106
  • Wiezenbaum, J. (1976). Computer power and human reason: from judgment to calculation. W. H. Freeman and Company.
  • Zullich, M., Macovaz, V., Pinna, G., & Pellegrino, F. A. (2023). An artificial intelligence system for automatic recognition of punches in fourteenth-century panel painting. IEEE, 11, 5864-5883. doi: 10.1109/ACCESS.2023.3236502
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sosyal ve Beşeri Bilimler Eğitimi (Ekonomi, İşletme ve Yönetim Hariç)
Bölüm Makaleler
Yazarlar

Zehra Canan Bayer 0000-0001-8593-4125

Erken Görünüm Tarihi 26 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 5 Ekim 2024
Kabul Tarihi 14 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Bayer, Z. C. (2024). Artificial Intelligence in Pedagogical Processes: a Transformative Perspective on Teaching Art History. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 6(2), 914-939.