Araştırma Makalesi
BibTex RIS Kaynak Göster

Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı

Yıl 2025, Cilt: 7 Sayı: 3, 503 - 511, 31.12.2025
https://doi.org/10.47112/neufmbd.2026.110

Öz

Bu çalışmada, multiset dizilerinin istatistiksel yakınsaklık kavramı incelenmiş ve bu konudaki temel tanımlar, özellikler ve teoremler ele alınmıştır. Çalışmada, multiset dizilerinin istatistiksel yakınsaklığı tanımlanmış, klasik küme dizileri ile benzerlikleri ve farklılıkları ortaya konulmuştur. Ayrıca, kuvvetli Cesàro toplanabilirlik ve diğer yakınsaklık türleri incelenmiş, bu kavramların multiset dizilerine uygulanabilirliği gösterilmiştir. Elde edilen sonuçlar, multiset dizilerinin daha genel bir perspektifle ele alınmasına katkı sağlamaktadır. Bu çalışmada, multiset dizilerinin λ-istatistiksel yakınsaklığı bir λ=(λ_n) dizisi kullanılarak elde edilecek ve önemli bazı sonuçlar ortaya konacaktır.

Kaynakça

  • E. A. Bender, Partitions of multisets, Discrete Mathematics. (1974), 301-311.
  • W. D. Blizard, The development of multiset theory, Modern Logic. 1 (1991), 319-352.
  • J. Lake, Sets, fuzzy sets, multisets and functions, Journal of the London Mathematical Society. 2(12) (1976), 323-326.
  • J. L. Hickman, A note on the concept of multiset, Bulletin of the Australian Mathematical Society. 22 (1980), 211-217.
  • R. K. Meyer, M. A. McRobbie, Multisets and relevant implication I and II, Australasian Journal of Philosophy. 60(2) (1982), 107-139.
  • G. P. Monro, The concept of multiset, Zeitschrift fur mathematische Logik und Grunlagen der Mathematik. 33(8) (1987), 171-178.
  • D. Knuth, The Art of computer programming, Seminumerical Algorithms, Second edition, Addison-Wesley Reading, Massachusetts, 1981.
  • A. Syropoulos, Mathematics of multisets, in: Lecture notes in computer science, 2001: pp. 347–358. doi:10.1007/3-540-45523-x_17
  • Ö. Ak Gümüş, Analyzing a mathematical model of the COVID-19 pandemic with the impact symptomatic and asymptomatic transmissions, Necmettin Erbakan University Journal of Science and Engineering. 6(3) (2024), 543-556. doi:10.47112/neufmbd.2024.64
  • M. Erdoğdu, A. Yavuz, Geometric analysis of the NLS surface with the Pseudo null Darboux frame of spacelike curve, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 88-198. doi: 10.47112/neufmbd.2024.42
  • N. Akgüneş, B. Aydın, Harary index for an algebraic graph, Necmettin Erbakan University Journal of Science and Engineering. 5(1) (2023), 9-13.
  • A.T. Karasahin, Performance evaluation of a genetically tuned LQR controller for an aerial robot, Necmettin Erbakan University Journal of Science and Engineering. 6(3) (2024), 468-482. doi: 10.47112/neufmbd.2024.59.
  • F. Bahadır, F.S. Balık, H.S. Yalçınkaya, The impact of COVID-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. doi: 10.47112/neufmbd.2023.17.
  • Güleç, H. H., Aktaş, İ., Coefficient estimate problems for a new subclass of bi-univalent functions linked with the generalized bivariate Fibonacci-like polynomial, Journal of Engineering Technology and Applied Sciences. 9(2) (2024), 71-84.
  • S. Pachilangode, S. C. John, Convergence of Multiset Sequences, Journal of New Theory. 34 (2021), 20-27.
  • H. Gümüş, H. H. Güleç, N. Demir, A Study on lacunary statistical convergence of multiset sequences, Kragujevac Journal of Mathematics. 50(4) (2026), 567–578.
  • N. Demir, H. Gümüş, Ideal convergence of multiset sequences, Filomat. 37(30) (2023), 10199-10207.
  • N. Demir, H. Gümüş, A study on lacunary statistical convergence of multiset sequences, Sigma Journal of Engineering and Natural Sciences. 42(5) (2024), 1575-1580.
  • H. Gümüş, N. Demir, limit points and cluster points of multiset sequences, Acta et Commentationes Universitatis Tartuensis de Mathematic. 28(2) (2024), 197-208.
  • H. Fast, Sur la convergence statistique, Colloquium Mathematicum. 2 (1951), 241-244.
  • H. Steinhaus, Sur la convergence ordiniaire et la convergence asymptotique, Colloquium Mathematicum. 2 (1951), 73-84.
  • A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, UK., 1979.
  • J. Schoenberg, The integrability of certain functions and related summability methods, American Mathematical Monthly. 66 (1959), 361-375.
  • P. Erdös, G. Tenenbaum, Sur les densités de certaines suites d'entiers, Proceedings of the London Mathematical Society. 59(3) (1989), 417-438.
  • A. R. Freedman, J.J. Sember, Densities and summability, Pacific Journal of Mathematics. 95 (1981), 293-305.
  • J. A. Fridy, On statistical convergence, Colloquium Mathematicum. 2 (1951), 241-244.
  • H. Gümüş, Lacunary weak statistical convergence, General Mathematics Notes. 28(1) (2015), 50-58.
  • M. Mursaleen, λ-statistical convergence, Mathematica Slovaca. 50(1) (2000), 111-115.
  • S. Debnath, A. Debnath, Statistical convergence of multisequences, Applied Sciences. 23 (2021), 17-28.

λ-Statistical Convergence of Multiset Sequences

Yıl 2025, Cilt: 7 Sayı: 3, 503 - 511, 31.12.2025
https://doi.org/10.47112/neufmbd.2026.110

Öz

In this study, the idea of statistical convergence within multiset sequences has been examined, and the fundamental definitions, properties, and theorems in this context have been addressed. In the study, the statistical convergence of multiset sequences is introduced, and the similarities and differences with classical set sequences are revealed. Furthermore, strong Cesàro summability and other types of convergence are examined, and the applicability of these concepts to multiset sequences is demonstrated. The results obtained contribute to the consideration of multiset sequences from a more general perspective. In this study, the λ-statistical convergence of multiset sequences will be obtained using a λ=(λ_n) sequence and some important results will be presented.

Kaynakça

  • E. A. Bender, Partitions of multisets, Discrete Mathematics. (1974), 301-311.
  • W. D. Blizard, The development of multiset theory, Modern Logic. 1 (1991), 319-352.
  • J. Lake, Sets, fuzzy sets, multisets and functions, Journal of the London Mathematical Society. 2(12) (1976), 323-326.
  • J. L. Hickman, A note on the concept of multiset, Bulletin of the Australian Mathematical Society. 22 (1980), 211-217.
  • R. K. Meyer, M. A. McRobbie, Multisets and relevant implication I and II, Australasian Journal of Philosophy. 60(2) (1982), 107-139.
  • G. P. Monro, The concept of multiset, Zeitschrift fur mathematische Logik und Grunlagen der Mathematik. 33(8) (1987), 171-178.
  • D. Knuth, The Art of computer programming, Seminumerical Algorithms, Second edition, Addison-Wesley Reading, Massachusetts, 1981.
  • A. Syropoulos, Mathematics of multisets, in: Lecture notes in computer science, 2001: pp. 347–358. doi:10.1007/3-540-45523-x_17
  • Ö. Ak Gümüş, Analyzing a mathematical model of the COVID-19 pandemic with the impact symptomatic and asymptomatic transmissions, Necmettin Erbakan University Journal of Science and Engineering. 6(3) (2024), 543-556. doi:10.47112/neufmbd.2024.64
  • M. Erdoğdu, A. Yavuz, Geometric analysis of the NLS surface with the Pseudo null Darboux frame of spacelike curve, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 88-198. doi: 10.47112/neufmbd.2024.42
  • N. Akgüneş, B. Aydın, Harary index for an algebraic graph, Necmettin Erbakan University Journal of Science and Engineering. 5(1) (2023), 9-13.
  • A.T. Karasahin, Performance evaluation of a genetically tuned LQR controller for an aerial robot, Necmettin Erbakan University Journal of Science and Engineering. 6(3) (2024), 468-482. doi: 10.47112/neufmbd.2024.59.
  • F. Bahadır, F.S. Balık, H.S. Yalçınkaya, The impact of COVID-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. doi: 10.47112/neufmbd.2023.17.
  • Güleç, H. H., Aktaş, İ., Coefficient estimate problems for a new subclass of bi-univalent functions linked with the generalized bivariate Fibonacci-like polynomial, Journal of Engineering Technology and Applied Sciences. 9(2) (2024), 71-84.
  • S. Pachilangode, S. C. John, Convergence of Multiset Sequences, Journal of New Theory. 34 (2021), 20-27.
  • H. Gümüş, H. H. Güleç, N. Demir, A Study on lacunary statistical convergence of multiset sequences, Kragujevac Journal of Mathematics. 50(4) (2026), 567–578.
  • N. Demir, H. Gümüş, Ideal convergence of multiset sequences, Filomat. 37(30) (2023), 10199-10207.
  • N. Demir, H. Gümüş, A study on lacunary statistical convergence of multiset sequences, Sigma Journal of Engineering and Natural Sciences. 42(5) (2024), 1575-1580.
  • H. Gümüş, N. Demir, limit points and cluster points of multiset sequences, Acta et Commentationes Universitatis Tartuensis de Mathematic. 28(2) (2024), 197-208.
  • H. Fast, Sur la convergence statistique, Colloquium Mathematicum. 2 (1951), 241-244.
  • H. Steinhaus, Sur la convergence ordiniaire et la convergence asymptotique, Colloquium Mathematicum. 2 (1951), 73-84.
  • A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, UK., 1979.
  • J. Schoenberg, The integrability of certain functions and related summability methods, American Mathematical Monthly. 66 (1959), 361-375.
  • P. Erdös, G. Tenenbaum, Sur les densités de certaines suites d'entiers, Proceedings of the London Mathematical Society. 59(3) (1989), 417-438.
  • A. R. Freedman, J.J. Sember, Densities and summability, Pacific Journal of Mathematics. 95 (1981), 293-305.
  • J. A. Fridy, On statistical convergence, Colloquium Mathematicum. 2 (1951), 241-244.
  • H. Gümüş, Lacunary weak statistical convergence, General Mathematics Notes. 28(1) (2015), 50-58.
  • M. Mursaleen, λ-statistical convergence, Mathematica Slovaca. 50(1) (2000), 111-115.
  • S. Debnath, A. Debnath, Statistical convergence of multisequences, Applied Sciences. 23 (2021), 17-28.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Operatör Cebirleri ve Fonksiyonel Analiz
Bölüm Araştırma Makalesi
Yazarlar

Nihal Demir 0000-0002-2415-0674

Hafize Gumus 0000-0001-8972-5961

Gönderilme Tarihi 5 Şubat 2025
Kabul Tarihi 13 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Demir, N., & Gumus, H. (2025). Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı. Necmettin Erbakan University Journal of Science and Engineering, 7(3), 503-511. https://doi.org/10.47112/neufmbd.2026.110
AMA 1.Demir N, Gumus H. Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı. NEU Fen Muh Bil Der. 2025;7(3):503-511. doi:10.47112/neufmbd.2026.110
Chicago Demir, Nihal, ve Hafize Gumus. 2025. “Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı”. Necmettin Erbakan University Journal of Science and Engineering 7 (3): 503-11. https://doi.org/10.47112/neufmbd.2026.110.
EndNote Demir N, Gumus H (01 Aralık 2025) Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı. Necmettin Erbakan University Journal of Science and Engineering 7 3 503–511.
IEEE [1]N. Demir ve H. Gumus, “Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı”, NEU Fen Muh Bil Der, c. 7, sy 3, ss. 503–511, Ara. 2025, doi: 10.47112/neufmbd.2026.110.
ISNAD Demir, Nihal - Gumus, Hafize. “Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı”. Necmettin Erbakan University Journal of Science and Engineering 7/3 (01 Aralık 2025): 503-511. https://doi.org/10.47112/neufmbd.2026.110.
JAMA 1.Demir N, Gumus H. Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı. NEU Fen Muh Bil Der. 2025;7:503–511.
MLA Demir, Nihal, ve Hafize Gumus. “Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı”. Necmettin Erbakan University Journal of Science and Engineering, c. 7, sy 3, Aralık 2025, ss. 503-11, doi:10.47112/neufmbd.2026.110.
Vancouver 1.Demir N, Gumus H. Multiset Dizilerinin λ- İstatistiksel Yakınsaklığı. NEU Fen Muh Bil Der [Internet]. 01 Aralık 2025;7(3):503-11. Erişim adresi: https://izlik.org/JA42DP44TL