Araştırma Makalesi
BibTex RIS Kaynak Göster

SWAT Model on Filyos Creek Basin

Yıl 2019, Cilt: 1 Sayı: 2, 90 - 102, 09.12.2019

Öz

In this study, the hydrology of the
Filyos Creek Basin was modeled using Soil and Water Assessment Tool (SWAT) to
determine the hydrological components. In the first phase of the study, a
hydrological model was established using digital elevation model, land use, soil
and meteorological data. The model was calibrated during the period 1988-1993
using the SWATCup automatic calibration program and verified during the period
1988-2000. When the hydrological components are investigated, all hydrological
output tends to decrease in the period 1979-2013. Serious decreases such as 35
% in water yield, 41 % in infiltration amount and 34% in groundwater amount are
remarkable. As the observations are compared with model results, the monthly NashSutcliffe,
RSR and PBIAS performance indicators for the calibration period at Filyos Creek
basin have been 0.67, 0.57 and -14.3, respectively and for the validation
period, 0.72, 0.52 and 18.9 respectively. It is reported that when these data
are compared with the performance criteria table performed by Morisa et al.
(2007), the results of calibration and validation for SWAT are very good.
Further, the results of this current study demonstrate that SWAT is very
satisfactory model for predicting to the hydrological processes in Filyos Creek
basin.

Kaynakça

  • [1] AM. Melesse, D. Webber, A. Haiduk, SG. Seteng, X. Wang, ME. Mcclain, Modeling hydrological variability of fresh water resources in the Rio Cobre watershed, Jamaica. Catena., 120 (2014) 81-90. doi: 10.1016/j.catena.2014.04.005
  • [2] KC. Abbaspour, E. Rouholahnejad, S. Vaghefı, R. Srinivasan, H. Yang, B. Klove, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol., 524 (2015) 733-752. doi: 10.1016/j.jhydrol.2015.03.027
  • [3] B. Klove, P. Ala-AhO, G. Bertrand, JJ. Gurdak, H. Kupfersberger, J. Kvorner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C. Bertacchi Uvo,., E. Velasco, P. Wachniew, M. Pulido-velázquez, Climate change impacts on groundwater and dependent ecosystems. J. Hydrol., 518 (2014) 250–266. doi: 10.1016/j.jhydrol.2013.06.037
  • [4] H. Yang, P. Reİchert, KC. Abbaspour, AJB. Zehnder, A water resources threshold and its implications for food security. Environ. Sci. Technol., 37 (14) (2003) 3048–3054. doi: 10.1021/es0263689
  • [5] UN Report. 2012. Managing Water Under Uncertainty and Risk. The United Nations World Water Development Report 4, vol. 1. UNESCO Publishing.
  • [6] P.R. Ehrlich, P.M. Kareiva, G.C. Daily, Securing natural capital and expanding equity to rescale civilization. Nature., 486 (2012) 68–73. doi: 10.1038/nature11157
  • [7] S. Suweis, A. Rinaldo, A. Maritan, P. D'Odorico, Water-controlled wealth of nations. Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 4230–4233.
  • [8] B. Wible, Science for sustainable development. Science., 336 (2012) 1396–1398. doi: 10.1126/science.1224530
  • [9] J. Alcamo, C.J. Vörösmarty, R.J. Naiman, D. Lettenmaier, C.Pahl-Wostl, A grand challenge for freshwater research: understanding the global water system. Environ. Res. Lett., 3 (2008) 1–6. doi: 10.1088/1748-9326/3/1/010202
  • [10] H. Qi, M.S Altinakar, A conceptual framework of agricultural land use planning with BMP for integrated watershed management. J. Environ. Manag., 92 (2011) 149–155. doi: 10.1016/j.jenvman.2010.08.023
  • [11] S. Polasky, E. Nelson, D. Pennington, K.A. Johnson, The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ. Resour. Econ., 48 (2011) 219–242. doi: 10.1007/s10640-010-9407-0
  • [12] X. Zhang, L. Zhang, J. Zhao, P. Rustomji, P. Hairsine, Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res., 44 (2008). doi: 10.1029/2007WR006711
  • [13] M.I. Mahmoud, H.V. Gupta, S. Rajagopal, Scenario development for water resources planning and watershed management: methodology and semi-arid region case study. Environ. Model. Softw., 26 (2011) 873–885. doi: 10.1016/j.envsoft.2011.02.003
  • [14] Z.H. Shi, L. Ai, N.F Fang, H.D. Zhu, Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in theThree Gorges Area, China. J. Hydrol., 438 (2012) 156–167. doi: 10.1016/j.jhydrol.2012.03.016
  • [15] H. Bormann, L. Breuer, T. Gräff, J.A. Huisman, Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecol. Model., 209 (2007) 29–40. doi: 10.1016/j.ecolmodel.2007.07.004
  • [16] Zampella, R.A., Procopio, N.A., Lathrop, R.G., Dow, C.L. 2007. Relationship of land-use, land-cover patterns and surface-water quality in the Mullica River Basin. J. Am. Water Resour. Assoc., 43 (2007) 594–604. doi:10.1111/j.1752-1688.2007.00045.x
  • [17] M. Arabi, R.S. Govindaraju, M.M. Hantush, Role of watershed subdivision on evaluation of long-term impact of best management practices on water quality. J. Am. Water Resour. Assoc., 42 (2006) 513–528. doi: 10.1111/j.1752-1688.2006.tb03854.x
  • [18] K.R. Douglas-Mankin, R. Srinivasan, J. Arnold, Soil and water assessment too l(SWAT) model: current developments and applications. Trans. ASABE., 53 (2010) 1423–1431. doi: 10.13031/2013.34915
  • [19] M.I. Lvovitch, The global water balance. Trans. Am. Geophys. Union., 54 (1973) 28–42. doi: 10.1029/EO054i001p00028
  • [20] A. Baumgartner, E. Reichel, The World Water Balance. Elsevier, New York, (1975) 182.
  • [21] B. Hingray, C. Picouet, A. Musy, Hydrology A Science for Engineers, ISBN: 9781466590595, CRC Press Taylor & Francis Group, USA. (2015).
  • [22] J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large area hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. Assoc., 34 (1) (1998)73–89.doi:10.1111/j.1752-1688.1998.tb05961.x
  • [23] C. He, Integration of geographic information systems and simulation model for watershed management. Environ. Model. Softw., 18 (2003) 809–813. doi: 10.1016/S1364-8152(03)00080-X
  • [24] T.J. Baker, S.N. Miller, Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol., 486 (2013) 100-111.doi:10.1016/j.jhydrol.2013.01.041
  • [25] J. Brzozowski, Z. Miatkowski, D. Śliwiński, K. Smarzyńska, M. Śmietanka, Application of SWAT model to small agricultural catchment in Poland. J. Water Land Dev., 15 (2011) 157–166. doi: 10.2478/v10025-012-0014-z
  • [26] L. Cheng, Z.X. Xu, R. Luo, Y.J. Mi, SWAT Application in arid and semi-arid regions: a case study in Kuye River basin. Geogr. Res., 28 (2009) 65–74. doi: 10.11821/yj2009010009
  • [27] G.O. Gül, D. Rosbjerg, Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT. Water Environ. J., 24 (2010) 21–31.doi: 10.1111/j.1747-6593.2008.00146.x
  • [28] S.G. Thampi, K.Y. Raneesh, T.V. Surya, Influence of scale on SWAT model calibration for streamflow in a river basin in the humid tropics. Water Resour. Manag., 24: (2010)4567–4578.doi:10.1007/s11269-010-9676-y
  • [29] R. Srinivasan, X. Zhang, J. Arnold, Swat Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. Asabe,, 53 (5) (2010) 1533-1546.doi:10.13031/2013.34903
  • [30] Y P. Wu, J. Chen, Analyzing the Water Budget and Hydrological Characteristics and Responses to Land Use in a Monsoonal Climate River Basin in South China. Environ. Manage., 51 (6) (2013) 1174-1186. doi: 10.1007/s00267-013-0045-5
  • [31] C. Tao, X L. Chen, J Z. Lu, P W. Gassman, S. Sabine, S P. Jose-Miguel, Assessing impacts of different land use scenarios on water budget of Fuhe River,China using SWAT model. Int. J. Agr. Biol. Eng., 8 (3): (2015) 95-109. doi: 10.3965/j.ijabe.20150803.1132
  • [32] Ö. Güngör, S. Göncü, Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrol. Process., 27 (3) (2013) 453-466. doi: 10.1002/hyp.9228
  • [33] D E. Akyüz, S. Kaya, D Z. Seker, S. Kabdasli, Definition of Flood Risky Areas with Calculation of Stream Water Velocity Via Using Numerical Model: Case Studyof Filyos River, Turkey. Fresen Environ Bull., 23 (12) (2014) 3022-3028. [34] TÜBİTAK-MAM,. Havza Koruma Eylem Planlarının Hazırlanması Batı Karadeniz Havzası Proje Nihai Raporu, Çevre ve Temiz Üretim Enstitüsü, Kocaeli. (2013).
  • [35] JG. Arnold, N. Fohrer, SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol. Process., 19(3) (2005) 563-572. doi: 10.1002/hyp.5611
  • [36] K C. Abbaspour, C A. Johnson, M T. Van Genuchten, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3 (4) (2004) 1340-1352. doi: 0.2113/3.4.1340
  • [37] J. Yang, P. Reichert, K C. Abbaspour, J. Xia, H. Yang, Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol., 358 (1-2) (2008) 1-23. doi: 10.1016/j.jhydrol.2008.05.012
  • [38] B A. Tolson, C A. Shoemaker, Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. J. Hydrol., 337 (1–2) (2007) 68-86. doi: 10.1016/j.jhydrol.2007.01.017
  • [39] J E. Nash, J V. Sutcliffe, River flow forecasting through conceptual models, I, A discussion of principles. J. Hydrol., 10: (1970) 282-290. doi: 10.1016/0022-1694(70)90255-6
  • [40] D N. Moriasi, J G. Arnold, M W. Van Liew, R L. Bingner, R D. Harmel, T L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE., 50 (3): (2007) 885-900. doi: 10.13031/2013.23153
  • [41] H V. Gupta, S. Sorooshian, P O. Yapo, Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng., 4 (2) (1999) 135-143. doi: 10.1061/(ASCE)1084-0699(1999)4:2(135)
  • [42] M.A. Andrade, C.R. Mello, S. Beskow, Hydrological simulation in a watershed with predominance of Oxisol in the Upper Grande river region, MG — Brazil. Rev. Bras. Eng. Agric. Ambient., 17 (2013) 69–76. doi: 10.1590/S1415-43662013000100010
  • [43] M.R. Viola, C.R. Mello, M. Giongo, S. Beskow, A.F. Santos, Hydrological modeling in a watershed of the Lower Araguaia River Basin, TO. J. Biotechnol. Biodivers., 3: (2012) 38–47.
  • [44] R. Aragão, M.A.S. Cruz, J.R.A. Amorim, L.C. Mendonça, E.E. Figueiredo, V.S. Srinivasan, Sensitivity analysis of the parameters of the SWAT model and simulation of the hydrosedimentological processes in a watershed in the northeastern region of Brazil. Rev. Bras. Ciênc. Solo., 37 (2013) 1091–1102. doi:10.1590/S0100-06832013000400026

Filyos Çayı Havzasında SWAT Modelinin Uygulaması

Yıl 2019, Cilt: 1 Sayı: 2, 90 - 102, 09.12.2019

Öz

Bu çalışmada, Batı Karadeniz
Bölgesinin en büyük havzası plan Filyos Çayı havzasının hidrolojik
bileşenlerinin belirlenmesi için Toprak ve Su Değerlendirme Aracı (SWAT) modeli
kullanılmıştır. Bu çalışmanın ilk aşamasında, Sayısal Yükseklik Modeli (SYM),
arazi kullanımı, toprak ve meteorolojik veriler kullanılarak bir hidrolojik
model oluşturulmuştur. Kurulan model, SWAT-Cup otomatik kalibrasyon programı
kullanılarak, 1988-1993 yılları arasındaki dönemde kalibre edilmiş, 1988-2000 yılları
arasındaki dönemde de doğrulanmıştır. Filyos Çayı havzasının hidrolojik
bileşenler incelendiğinde, tüm çıktılar 1979-2013 döneminde azalma
eğilimindedir. Su veriminde % 35, sızma miktarında % 41 ve yeraltı suyu
miktarında% 34 gibi ciddi azalmalar dikkat çekmektedir.  Diğer yandan SWAT modeli kalibrasyon dönemi
için aylık Nash-Sutcliffe, Standard Deviation of the Measured Data (RSR) ve
percentage bias (PBIAS) performans göstergeleri sırasıyla 0.67, 0.57 ve -14.3,
validasyon dönemi için 0.72, 0.52 ve -18.9 olarak tespit edilmiştir. Bu
veriler, Morisia vd. (2007) tarafından geliştirilen performans kriter tablosu
ile karşılaştırıldığında, SWAT kalibrasyon ve validasyon performanslarının
oldukça iyi olduğu ortaya koyulmuştur. Aynı zamanda bu çalışma Filyos Çayı
havzasındaki hidrolojik prosesleri tahmin etmek için geliştirilen SWAT’ın
oldukça iyi ve güvenli bir model olduğunu göstermiştir.

Kaynakça

  • [1] AM. Melesse, D. Webber, A. Haiduk, SG. Seteng, X. Wang, ME. Mcclain, Modeling hydrological variability of fresh water resources in the Rio Cobre watershed, Jamaica. Catena., 120 (2014) 81-90. doi: 10.1016/j.catena.2014.04.005
  • [2] KC. Abbaspour, E. Rouholahnejad, S. Vaghefı, R. Srinivasan, H. Yang, B. Klove, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol., 524 (2015) 733-752. doi: 10.1016/j.jhydrol.2015.03.027
  • [3] B. Klove, P. Ala-AhO, G. Bertrand, JJ. Gurdak, H. Kupfersberger, J. Kvorner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C. Bertacchi Uvo,., E. Velasco, P. Wachniew, M. Pulido-velázquez, Climate change impacts on groundwater and dependent ecosystems. J. Hydrol., 518 (2014) 250–266. doi: 10.1016/j.jhydrol.2013.06.037
  • [4] H. Yang, P. Reİchert, KC. Abbaspour, AJB. Zehnder, A water resources threshold and its implications for food security. Environ. Sci. Technol., 37 (14) (2003) 3048–3054. doi: 10.1021/es0263689
  • [5] UN Report. 2012. Managing Water Under Uncertainty and Risk. The United Nations World Water Development Report 4, vol. 1. UNESCO Publishing.
  • [6] P.R. Ehrlich, P.M. Kareiva, G.C. Daily, Securing natural capital and expanding equity to rescale civilization. Nature., 486 (2012) 68–73. doi: 10.1038/nature11157
  • [7] S. Suweis, A. Rinaldo, A. Maritan, P. D'Odorico, Water-controlled wealth of nations. Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 4230–4233.
  • [8] B. Wible, Science for sustainable development. Science., 336 (2012) 1396–1398. doi: 10.1126/science.1224530
  • [9] J. Alcamo, C.J. Vörösmarty, R.J. Naiman, D. Lettenmaier, C.Pahl-Wostl, A grand challenge for freshwater research: understanding the global water system. Environ. Res. Lett., 3 (2008) 1–6. doi: 10.1088/1748-9326/3/1/010202
  • [10] H. Qi, M.S Altinakar, A conceptual framework of agricultural land use planning with BMP for integrated watershed management. J. Environ. Manag., 92 (2011) 149–155. doi: 10.1016/j.jenvman.2010.08.023
  • [11] S. Polasky, E. Nelson, D. Pennington, K.A. Johnson, The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ. Resour. Econ., 48 (2011) 219–242. doi: 10.1007/s10640-010-9407-0
  • [12] X. Zhang, L. Zhang, J. Zhao, P. Rustomji, P. Hairsine, Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res., 44 (2008). doi: 10.1029/2007WR006711
  • [13] M.I. Mahmoud, H.V. Gupta, S. Rajagopal, Scenario development for water resources planning and watershed management: methodology and semi-arid region case study. Environ. Model. Softw., 26 (2011) 873–885. doi: 10.1016/j.envsoft.2011.02.003
  • [14] Z.H. Shi, L. Ai, N.F Fang, H.D. Zhu, Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in theThree Gorges Area, China. J. Hydrol., 438 (2012) 156–167. doi: 10.1016/j.jhydrol.2012.03.016
  • [15] H. Bormann, L. Breuer, T. Gräff, J.A. Huisman, Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecol. Model., 209 (2007) 29–40. doi: 10.1016/j.ecolmodel.2007.07.004
  • [16] Zampella, R.A., Procopio, N.A., Lathrop, R.G., Dow, C.L. 2007. Relationship of land-use, land-cover patterns and surface-water quality in the Mullica River Basin. J. Am. Water Resour. Assoc., 43 (2007) 594–604. doi:10.1111/j.1752-1688.2007.00045.x
  • [17] M. Arabi, R.S. Govindaraju, M.M. Hantush, Role of watershed subdivision on evaluation of long-term impact of best management practices on water quality. J. Am. Water Resour. Assoc., 42 (2006) 513–528. doi: 10.1111/j.1752-1688.2006.tb03854.x
  • [18] K.R. Douglas-Mankin, R. Srinivasan, J. Arnold, Soil and water assessment too l(SWAT) model: current developments and applications. Trans. ASABE., 53 (2010) 1423–1431. doi: 10.13031/2013.34915
  • [19] M.I. Lvovitch, The global water balance. Trans. Am. Geophys. Union., 54 (1973) 28–42. doi: 10.1029/EO054i001p00028
  • [20] A. Baumgartner, E. Reichel, The World Water Balance. Elsevier, New York, (1975) 182.
  • [21] B. Hingray, C. Picouet, A. Musy, Hydrology A Science for Engineers, ISBN: 9781466590595, CRC Press Taylor & Francis Group, USA. (2015).
  • [22] J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large area hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. Assoc., 34 (1) (1998)73–89.doi:10.1111/j.1752-1688.1998.tb05961.x
  • [23] C. He, Integration of geographic information systems and simulation model for watershed management. Environ. Model. Softw., 18 (2003) 809–813. doi: 10.1016/S1364-8152(03)00080-X
  • [24] T.J. Baker, S.N. Miller, Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol., 486 (2013) 100-111.doi:10.1016/j.jhydrol.2013.01.041
  • [25] J. Brzozowski, Z. Miatkowski, D. Śliwiński, K. Smarzyńska, M. Śmietanka, Application of SWAT model to small agricultural catchment in Poland. J. Water Land Dev., 15 (2011) 157–166. doi: 10.2478/v10025-012-0014-z
  • [26] L. Cheng, Z.X. Xu, R. Luo, Y.J. Mi, SWAT Application in arid and semi-arid regions: a case study in Kuye River basin. Geogr. Res., 28 (2009) 65–74. doi: 10.11821/yj2009010009
  • [27] G.O. Gül, D. Rosbjerg, Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT. Water Environ. J., 24 (2010) 21–31.doi: 10.1111/j.1747-6593.2008.00146.x
  • [28] S.G. Thampi, K.Y. Raneesh, T.V. Surya, Influence of scale on SWAT model calibration for streamflow in a river basin in the humid tropics. Water Resour. Manag., 24: (2010)4567–4578.doi:10.1007/s11269-010-9676-y
  • [29] R. Srinivasan, X. Zhang, J. Arnold, Swat Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. Asabe,, 53 (5) (2010) 1533-1546.doi:10.13031/2013.34903
  • [30] Y P. Wu, J. Chen, Analyzing the Water Budget and Hydrological Characteristics and Responses to Land Use in a Monsoonal Climate River Basin in South China. Environ. Manage., 51 (6) (2013) 1174-1186. doi: 10.1007/s00267-013-0045-5
  • [31] C. Tao, X L. Chen, J Z. Lu, P W. Gassman, S. Sabine, S P. Jose-Miguel, Assessing impacts of different land use scenarios on water budget of Fuhe River,China using SWAT model. Int. J. Agr. Biol. Eng., 8 (3): (2015) 95-109. doi: 10.3965/j.ijabe.20150803.1132
  • [32] Ö. Güngör, S. Göncü, Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrol. Process., 27 (3) (2013) 453-466. doi: 10.1002/hyp.9228
  • [33] D E. Akyüz, S. Kaya, D Z. Seker, S. Kabdasli, Definition of Flood Risky Areas with Calculation of Stream Water Velocity Via Using Numerical Model: Case Studyof Filyos River, Turkey. Fresen Environ Bull., 23 (12) (2014) 3022-3028. [34] TÜBİTAK-MAM,. Havza Koruma Eylem Planlarının Hazırlanması Batı Karadeniz Havzası Proje Nihai Raporu, Çevre ve Temiz Üretim Enstitüsü, Kocaeli. (2013).
  • [35] JG. Arnold, N. Fohrer, SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol. Process., 19(3) (2005) 563-572. doi: 10.1002/hyp.5611
  • [36] K C. Abbaspour, C A. Johnson, M T. Van Genuchten, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3 (4) (2004) 1340-1352. doi: 0.2113/3.4.1340
  • [37] J. Yang, P. Reichert, K C. Abbaspour, J. Xia, H. Yang, Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol., 358 (1-2) (2008) 1-23. doi: 10.1016/j.jhydrol.2008.05.012
  • [38] B A. Tolson, C A. Shoemaker, Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. J. Hydrol., 337 (1–2) (2007) 68-86. doi: 10.1016/j.jhydrol.2007.01.017
  • [39] J E. Nash, J V. Sutcliffe, River flow forecasting through conceptual models, I, A discussion of principles. J. Hydrol., 10: (1970) 282-290. doi: 10.1016/0022-1694(70)90255-6
  • [40] D N. Moriasi, J G. Arnold, M W. Van Liew, R L. Bingner, R D. Harmel, T L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE., 50 (3): (2007) 885-900. doi: 10.13031/2013.23153
  • [41] H V. Gupta, S. Sorooshian, P O. Yapo, Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng., 4 (2) (1999) 135-143. doi: 10.1061/(ASCE)1084-0699(1999)4:2(135)
  • [42] M.A. Andrade, C.R. Mello, S. Beskow, Hydrological simulation in a watershed with predominance of Oxisol in the Upper Grande river region, MG — Brazil. Rev. Bras. Eng. Agric. Ambient., 17 (2013) 69–76. doi: 10.1590/S1415-43662013000100010
  • [43] M.R. Viola, C.R. Mello, M. Giongo, S. Beskow, A.F. Santos, Hydrological modeling in a watershed of the Lower Araguaia River Basin, TO. J. Biotechnol. Biodivers., 3: (2012) 38–47.
  • [44] R. Aragão, M.A.S. Cruz, J.R.A. Amorim, L.C. Mendonça, E.E. Figueiredo, V.S. Srinivasan, Sensitivity analysis of the parameters of the SWAT model and simulation of the hydrosedimentological processes in a watershed in the northeastern region of Brazil. Rev. Bras. Ciênc. Solo., 37 (2013) 1091–1102. doi:10.1590/S0100-06832013000400026
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kadir Özdemir 0000-0003-1464-7078

Ömer Güngör Bu kişi benim 0000-0001-9554-0824

Yayımlanma Tarihi 9 Aralık 2019
Kabul Tarihi 13 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 2

Kaynak Göster

APA Özdemir, K., & Güngör, Ö. (2019). Filyos Çayı Havzasında SWAT Modelinin Uygulaması. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 1(2), 90-102.
AMA Özdemir K, Güngör Ö. Filyos Çayı Havzasında SWAT Modelinin Uygulaması. NEU Fen Muh Bil Der. Aralık 2019;1(2):90-102.
Chicago Özdemir, Kadir, ve Ömer Güngör. “Filyos Çayı Havzasında SWAT Modelinin Uygulaması”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 1, sy. 2 (Aralık 2019): 90-102.
EndNote Özdemir K, Güngör Ö (01 Aralık 2019) Filyos Çayı Havzasında SWAT Modelinin Uygulaması. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 1 2 90–102.
IEEE K. Özdemir ve Ö. Güngör, “Filyos Çayı Havzasında SWAT Modelinin Uygulaması”, NEU Fen Muh Bil Der, c. 1, sy. 2, ss. 90–102, 2019.
ISNAD Özdemir, Kadir - Güngör, Ömer. “Filyos Çayı Havzasında SWAT Modelinin Uygulaması”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 1/2 (Aralık 2019), 90-102.
JAMA Özdemir K, Güngör Ö. Filyos Çayı Havzasında SWAT Modelinin Uygulaması. NEU Fen Muh Bil Der. 2019;1:90–102.
MLA Özdemir, Kadir ve Ömer Güngör. “Filyos Çayı Havzasında SWAT Modelinin Uygulaması”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 1, sy. 2, 2019, ss. 90-102.
Vancouver Özdemir K, Güngör Ö. Filyos Çayı Havzasında SWAT Modelinin Uygulaması. NEU Fen Muh Bil Der. 2019;1(2):90-102.


32206                   17157           17158