Araştırma Makalesi
BibTex RIS Kaynak Göster

Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu

Yıl 2021, , 140 - 149, 15.01.2021
https://doi.org/10.28948/ngumuh.740797

Öz

Sürdürülebilir gıda üretimini geliştirmeye yönelik yaklaşımlardan biri, gıda sanayi atıklarına değer katmaktır. Zeytin ve zeytinyağı atıklarından olan zeytin çekirdeği, yapısındaki fenolik bileşikler nedeniyle doğal bir antioksidan kaynağıdır. Bu çalışmada zeytin çekirdeği su ekstraktının, kitosan varlığında dondurarak kurutma yöntemiyle mikroenkapsülasyonu amaçlanmıştır. Toz ürünün bazı fiziksel, yığın, partikül ve rekonstitüsyon özellikleri ile in vitro salınım değerleri, fenolik bileşik içeriği ve antioksidan aktivitesi belirlendi. Düşük nem içeriğine (% 3.58), yığın (0.06 g/cm3) ve sıkıştırılmış yoğunluğa (0.10 g/cm3) sahip toz üründeki fenolik bileşiklerin in vitro salınımı, simüle mide sıvısında % 25.18 ve bağırsak sıvısında ise % 41.01 idi. Yüksek toplam fenolik içeriğe (565.61 mg GAE/100 g) ve antioksidan aktiviteye (EC50: 1.85 mg ve demir indirgeme yeteneği: 1330.80 mg FeSO4/100 g) de sahipti. Hidroksitirosol, (+)-kateşin, vanilik asit, şiringik asit ve oleuropeinin varlığı, kalitatif ve kantitatif olarak tespit edildi. Elde edilen zeytin çekirdeği antioksidanı tozunun gıdaların fonksiyonel özelliklerinin geliştirilmesi için doğal katkı maddesi olarak kullanılabileceği öngörülmektedir.

Kaynakça

  • C. Yamashita, M. M. S. Chung, C. dos Santos, C. R. M. Mayer, I. C. F. Moraes, and I. G. Branco, Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT - Food Science and Technology, 84, 256–262, 2017. https://doi.org/10.1016/j.lwt.2017.05.063.
  • V. Hernández, J. M. Romero-García, J. A. Dávila, E. Castro, and C. A. Cardona, Techno-economic and environmental assessment of an olive stone based biorefinery. Resources, Conservation and Recycling, 92, 145–150, 2014. https://doi.org/10.1016/j.resconrec. 2014.09.008.
  • F. J. Gomez-de la Cruz, P. J. Casanova-Pelaez, J. M. Palomar-Carnicero, and F. Cruz-Peragon, Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction. Energy, 75, 146–152, 2014. https://doi.org/10.1016/j.energy.2014.06.08 5.
  • A. Moubarik and N. Grimi, Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Research International, 73, 169–175, 2015. https://doi. org/10. 1016/j.foodres.2014.07.050.
  • E. Shannon, A. K. Jaiswal, and N. Abu-Ghannam, Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: a kinetic study. Food Research, 2(1), 1–11, 2017. https://doi.org/10.26656/fr .2017.2(1).117
  • M. Al-Farsi, A. Al-Amri, A. Al-Hadhrami, and S. Al-Belushi, Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon, 4, e00874, 2018. https://doi. org/10.1016/j.heliyon.2018.e00874.
  • V. G. L. Souza, A. L. Fernando, J. R. A. Pires, P. F. Rodrigues, A. A. S. Lopes, and F. M. B. Fernandes, Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107, 565–572, 2017. https://doi.org/10.1016/j.indcrop. 2017.04.056.
  • L. F. Ballesteros, M. J. Ramirez, C. E. Orrego, J. A. Teixeira, and S. I. Mussatto, Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631, 2017. https://doi.org/10.1016/j.foodchem.2017. 05.142.
  • R. Gonzalez-Ortega, M. Faieta, C. D. Di Mattia, L. Valbonetti, and P. Pittia, Microencapsulation of olive leaf extract by freeze-drying: effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285, 110089, 2020. https://doi.org/ 10.1016/j.jfoodeng. 2020.110089.
  • J. A. Pellicer, M. I. Fortea, J. Trabal, M. I. Rodríguez-López, J. A. Gabaldon, and E. Núñez-Delicado, Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technology, 347, 179–185, 2019. https://doi.org/10.10 16/j.powtec.2019.03.010.
  • S. N. Dirim, G. Çalışkan, and K. Ergun, Dondurularak kurutulmuş bazı meyve tozlarının toz ürün özelliklerinin belirlenmesi. Gıda, 40(2), 85–92, 2015. https://doi.org/10.15237/gida.GD14059.
  • E. Nakilcioğlu-Taş and S. Ötleş, Polyphenols from olive stones: extraction with a pilot scale pressurized water extractor, microencapsulation by spray- dryer and storage stability evaluation. Journal of Food Measurement and Charactarization, 14(2), 849–861, 2020. https://doi.org/10.1007/s11694-019-00333-y.
  • S. L. Kosaraju, L. D’ath, and A. Lawrence, Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydrate. Polymers, 64(2), 163–167, 2006. https://doi.org/10.1016/j.carbpol.2005. 11.027.
  • S. L. Young, X. Sarda, and M. Rosenberg, Microencapsulating properties of whey proteins.1. Microencapsulation of anhydrous milk fat. Journal of Dairy Science, 76, 2868–2877, 1993. https://doi.org/ 10.3168/jds.S0022-0302(93)77625-0.
  • E. M. Littringer, M. F. Noisternig, A. Mescher, H. Schroettner, P. Walzel, U. J. Griesser, and N. A. Urbanetz, The morphology and various densities of spray dried mannitol. Powder Technology, 246, 193–200, 2013. https://doi.org/10.1016/j.powtec.2013.05.0 04
  • R. L. Carr, Evaluating flow properties of solids. Chemical Engineering, 72, 163–168, 1965.
  • M. R. I. Shishir, F. S. Taip, N. A. Aziz, and R. A. Talib, Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2, 74–81, 2014. https://doi.org/10.1016/j.aas pro.2014.11.011.
  • Hausner H.H., Friction conditions in a mass of metal powder. The International Journal of Powder Metallurgy, 3(4), 7–13, 1967.
  • Y. Z. Cai and H. Corke, Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science, 65(6), 1248–1252, 2000. https://doi. org/10.111 1/j.1365- 2621.2000.tb10273.x
  • R. V. B. Fernandes, S. V. Borges, and D. A. Botrel, Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciência e Tecnologia de Alimentos., 33(1), 171–178, 2013. http://dx.doi.org/10.1590/S0101-206120130005 00025.
  • S. Jaya and H. Das, Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. Journal of Food Engineering, 63(2), 125–134, 2004. https://doi.org/10. 1016/S0260-8774(03)00135-3
  • A. M. Goula and K. G. Adamopoulos, Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Drying Technology, 26(6), 714–725, 2008. https://doi.org/10.1080/07373930802046369.
  • M. Koç, Ö. Güngör, A. Zungur, B. Yalçın, İ. Selek, F. Kaymak-Ertekin, and S. Ötles, Microencapsulation of extra virgin olive oil by spray drying: Effect of wall materials composition, process conditions, and emulsification method. Food and Bioprocess Technology, 8, 301–318, 2015. https://doi.org/10.1007 /s11947-014-1404-9.
  • M. Fuchs, C. Turchiuli, M. Bohin, M. E. Cuvelier, C. Ordonnaud, M. N. Peyrat-Maillard, and E. Dumoulin, Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35, 2006. https://doi.org/10.10 16/j.jfoodeng.2005.03.047
  • N. Jinapong, M. Suphantharika, and P. Jamnong, Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205, 2008. https://doi.org/10.1016/j.jfoodeng.200 7.04.032.
  • C. Saénz, S. Tapia, J. Chávez, and P. Robert, Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622, 2009. https://doi. org/10.10 16/j.foodchem.2008.09.095.
  • A. Luca, B. Cilek, V. Hasirci, S. Sahin, and G. Sumnu, Storage and baking stability of encapsulated sour cherry phenolic compounds prepared from micro- and nano-suspensions. Food and Bioprocess Technology, 7(1), 204–211, 2014. https://doi.org/10.1007/s11947-013-10 48 -1.
  • V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–153, 1965.
  • Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, and S. Cheng, Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260, 2006. https://doi.org/10.1016/j.foodchem.2005.02.033.
  • D. Heimler, P. Vignolini, M. G. Dini, and A. Romani, Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. Journal of Agriculture and Food Chemistry, 53(8), 3053–3056, 2005. https://doi.org/10.1021/jf049001r.
  • L. Zhang and S. L. Kosaraju, Biopolymeric delivery system for controlled release of polyphenolic antioxidants. European Polymer Journal, 43(7), 2956–2966, 2007. https://doi.org/10.1016/j.eurpolymj.2007. 04.033.
  • K. Konecsni, Analysis and entrapment of select antioxidants from chokecherry and saskatoon berry fruits. Master Thesis, The University of Saskatchewan, Saskatchewan, Canada, 2011.
  • W. Brand-Williams, M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissens-chaft-und-Technologie, 28, 25–30, 1995. https://doi.org/10.1016/S0023-6438(95)8000 8-5.
  • C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, and Y. Jiang, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12), 1719–1726, 2003. https://doi.org/10. 1016/j.nutres.2003.08.005.
  • J. Z. Xu, S. Y. V. Yeung, Q. Chang, Y. Huang, and Z.-Y. Chen, Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. British Journal of Nutrition, 91(6), 873–881, 2004. https://doi.org/10.1079/BJN20041132.
  • S. Yerlikaya and H. Şen Arslan, Dondurularak ve püskürterek kurutulmuş süt tozlarının bazı mikrobiyolojik ve fizikokimyasal özelliklerinin karşılaştırılması. BEÜ Fen Bilimleri Dergisi, 8(2), 677–687, 2019.
  • İ. Tontul, F. Ergin, E. Eroğlu, A. Küçükçetin, and A. Topuz, Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176, 2018. https://doi.org/10.1016/j.idairyj.2018.06.002.
  • D. Yıldız Turgut and A. Bayır Yeğin, Kamkat tozunun fizikokimyasal özellikleri üzerine farklı kurutma uygulamalarının etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 23(4), 477–488, 2019. https://doi.org/10.2905 0/harranziraat.569808.
  • S. N. Dirim and G. Çalışkan, Determination of the effect of freeze drying process on the productıon of pumpkın (Cucurbita moschata) puree powder and the powder properties. Gıda, 37(4), 203–210, 2012.
  • E. Ergüney, Z. Gülsünoğlu, E. Fıratlıgil-Durmuş, and M. Kılıç-Akyılmaz, Karayemiş tozu fiziksel özelliklerinin iyileştirilmesi. Akademik Gıda, 13(2), 108–114, 2015.
  • S. Quispe-Condori, M. D. A. Saldaña, and F. Temelli, Microencapsulation of flax oil with zein using spray and freeze drying. LWT - Food Science and Technology, 44, 1880–1887, 2011. https://doi.org/ 10.1016/j.lwt.201 1.01.005.
  • T. Laokuldilok and N. Kanha, Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Food Science and Technology, 64(1), 405–411, 2015. https://doi.org/ 10.1016/j.lwt.2015.05.015.
  • G. Çalışkan, K. Ergün and S. N. Dirim, Freeze drying of kiwi (Actinidia deliciosa) puree and the powder properties. Italian Journal of Food Science, 27, 385–397, 2015. https://doi.org/10.14674/1120-1770/ijfs.v2 82.
  • İ. Türker, B. Koç, and H. İşleroğlu, Effect of spray-freeze drying process on physical properties of maltodextrin. Gıda, 43(2), 197–210, 2018. https://doi. org/10.15237/gida.GD17101.
  • L. Sturm, I. G. O. Črnivec, K. Istenič, A. Ota, P. Megušar, A. Slukan, M. Humar, S. Levic, V. Nedović, R. Kopinč, M. Deželak, A. P. Gonzales, and N. P. Ulrih, Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 116, 196–211, 2019. https://doi.org/ 10.1016/j.fbp.2019.05.008.
  • H. Baykal, K. Karais, G. Çalışkan Koç, and S. N. Dirim, Tarçın, keçiboynuzu ve zencefil ile zenginleştirilerek üretilmiş keçi sütü tozlarının özellikleri. Gıda, 43(4), 716–732, 2018. https://doi.org/ 10.15237/ gida.gd18046.
  • Y. R. R. S. Rezende, J. P. Nogueira, and N. Narain, Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254(February), 281–291, 2018. https://doi. org/10.1016/j.foodchem.2018.02.026.
  • I. P. Turkiewicz, A. Wojdyło, K. Tkacz, K. Lech, A. Michalska-Ciechanowska, and P. Nowicka, The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 323, 126830, 2020. https://doi.org/10.1016/j.foodchem. 2020.126830.
  • S. H. Omar, P. G. Kerr, C. J. Scott, A. S. Hamlin, and H. K. Obied, Olive (Olea europaea L.) biophenols: a nutriceutical against oxidative stress in SH-SY5Y cells. Molecules, 22, 1–20, 2017. https://doi.org/10.3390/ molecules22111858

Microencapsulation of olive stone antioxidants by freeze-drying technique: Physical and chemical characterization of powder product

Yıl 2021, , 140 - 149, 15.01.2021
https://doi.org/10.28948/ngumuh.740797

Öz

One of the approaches improving sustainable food production is to add value to the food industry wastes. Olive stone, which is one of the olive and olive oil wastes, is a natural antioxidant source due to its phenolic compounds. In this study, microencapsulation of olive stone water extract by freeze-drying in the presence of chitosan is aimed. Some physical, bulk, particle, and reconstitution properties, in vitro release values, phenolic content, and antioxidant activity of the powder were determined. The in vitro release of phenolic compounds in the powder with low moisture content (3.58 %), bulk (0.06 g/cm3), and tapped density (0.10 g/cm3) was 25.18 % in simulated gastric fluid and 41.01 % in simulated intestinal fluid. It also had high total phenolic content (565.61 mg GAE/100 g) and antioxidant activity (EC50: 1.85 mg, and ferric reducing antioxidant power: 1330.80 mg FeSO4/100 g). The presence of hydroxytyrosol, (+)-catechin, vanilic acid, syringic acid and oleuropein was determined qualitatively and quantitatively. It is predicted that the obtained olive stone antioxidant powder can be used as a natural additive to improve the functional properties of foods.

Kaynakça

  • C. Yamashita, M. M. S. Chung, C. dos Santos, C. R. M. Mayer, I. C. F. Moraes, and I. G. Branco, Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT - Food Science and Technology, 84, 256–262, 2017. https://doi.org/10.1016/j.lwt.2017.05.063.
  • V. Hernández, J. M. Romero-García, J. A. Dávila, E. Castro, and C. A. Cardona, Techno-economic and environmental assessment of an olive stone based biorefinery. Resources, Conservation and Recycling, 92, 145–150, 2014. https://doi.org/10.1016/j.resconrec. 2014.09.008.
  • F. J. Gomez-de la Cruz, P. J. Casanova-Pelaez, J. M. Palomar-Carnicero, and F. Cruz-Peragon, Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction. Energy, 75, 146–152, 2014. https://doi.org/10.1016/j.energy.2014.06.08 5.
  • A. Moubarik and N. Grimi, Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Research International, 73, 169–175, 2015. https://doi. org/10. 1016/j.foodres.2014.07.050.
  • E. Shannon, A. K. Jaiswal, and N. Abu-Ghannam, Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: a kinetic study. Food Research, 2(1), 1–11, 2017. https://doi.org/10.26656/fr .2017.2(1).117
  • M. Al-Farsi, A. Al-Amri, A. Al-Hadhrami, and S. Al-Belushi, Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon, 4, e00874, 2018. https://doi. org/10.1016/j.heliyon.2018.e00874.
  • V. G. L. Souza, A. L. Fernando, J. R. A. Pires, P. F. Rodrigues, A. A. S. Lopes, and F. M. B. Fernandes, Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107, 565–572, 2017. https://doi.org/10.1016/j.indcrop. 2017.04.056.
  • L. F. Ballesteros, M. J. Ramirez, C. E. Orrego, J. A. Teixeira, and S. I. Mussatto, Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631, 2017. https://doi.org/10.1016/j.foodchem.2017. 05.142.
  • R. Gonzalez-Ortega, M. Faieta, C. D. Di Mattia, L. Valbonetti, and P. Pittia, Microencapsulation of olive leaf extract by freeze-drying: effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285, 110089, 2020. https://doi.org/ 10.1016/j.jfoodeng. 2020.110089.
  • J. A. Pellicer, M. I. Fortea, J. Trabal, M. I. Rodríguez-López, J. A. Gabaldon, and E. Núñez-Delicado, Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technology, 347, 179–185, 2019. https://doi.org/10.10 16/j.powtec.2019.03.010.
  • S. N. Dirim, G. Çalışkan, and K. Ergun, Dondurularak kurutulmuş bazı meyve tozlarının toz ürün özelliklerinin belirlenmesi. Gıda, 40(2), 85–92, 2015. https://doi.org/10.15237/gida.GD14059.
  • E. Nakilcioğlu-Taş and S. Ötleş, Polyphenols from olive stones: extraction with a pilot scale pressurized water extractor, microencapsulation by spray- dryer and storage stability evaluation. Journal of Food Measurement and Charactarization, 14(2), 849–861, 2020. https://doi.org/10.1007/s11694-019-00333-y.
  • S. L. Kosaraju, L. D’ath, and A. Lawrence, Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydrate. Polymers, 64(2), 163–167, 2006. https://doi.org/10.1016/j.carbpol.2005. 11.027.
  • S. L. Young, X. Sarda, and M. Rosenberg, Microencapsulating properties of whey proteins.1. Microencapsulation of anhydrous milk fat. Journal of Dairy Science, 76, 2868–2877, 1993. https://doi.org/ 10.3168/jds.S0022-0302(93)77625-0.
  • E. M. Littringer, M. F. Noisternig, A. Mescher, H. Schroettner, P. Walzel, U. J. Griesser, and N. A. Urbanetz, The morphology and various densities of spray dried mannitol. Powder Technology, 246, 193–200, 2013. https://doi.org/10.1016/j.powtec.2013.05.0 04
  • R. L. Carr, Evaluating flow properties of solids. Chemical Engineering, 72, 163–168, 1965.
  • M. R. I. Shishir, F. S. Taip, N. A. Aziz, and R. A. Talib, Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2, 74–81, 2014. https://doi.org/10.1016/j.aas pro.2014.11.011.
  • Hausner H.H., Friction conditions in a mass of metal powder. The International Journal of Powder Metallurgy, 3(4), 7–13, 1967.
  • Y. Z. Cai and H. Corke, Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science, 65(6), 1248–1252, 2000. https://doi. org/10.111 1/j.1365- 2621.2000.tb10273.x
  • R. V. B. Fernandes, S. V. Borges, and D. A. Botrel, Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciência e Tecnologia de Alimentos., 33(1), 171–178, 2013. http://dx.doi.org/10.1590/S0101-206120130005 00025.
  • S. Jaya and H. Das, Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. Journal of Food Engineering, 63(2), 125–134, 2004. https://doi.org/10. 1016/S0260-8774(03)00135-3
  • A. M. Goula and K. G. Adamopoulos, Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Drying Technology, 26(6), 714–725, 2008. https://doi.org/10.1080/07373930802046369.
  • M. Koç, Ö. Güngör, A. Zungur, B. Yalçın, İ. Selek, F. Kaymak-Ertekin, and S. Ötles, Microencapsulation of extra virgin olive oil by spray drying: Effect of wall materials composition, process conditions, and emulsification method. Food and Bioprocess Technology, 8, 301–318, 2015. https://doi.org/10.1007 /s11947-014-1404-9.
  • M. Fuchs, C. Turchiuli, M. Bohin, M. E. Cuvelier, C. Ordonnaud, M. N. Peyrat-Maillard, and E. Dumoulin, Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35, 2006. https://doi.org/10.10 16/j.jfoodeng.2005.03.047
  • N. Jinapong, M. Suphantharika, and P. Jamnong, Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205, 2008. https://doi.org/10.1016/j.jfoodeng.200 7.04.032.
  • C. Saénz, S. Tapia, J. Chávez, and P. Robert, Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622, 2009. https://doi. org/10.10 16/j.foodchem.2008.09.095.
  • A. Luca, B. Cilek, V. Hasirci, S. Sahin, and G. Sumnu, Storage and baking stability of encapsulated sour cherry phenolic compounds prepared from micro- and nano-suspensions. Food and Bioprocess Technology, 7(1), 204–211, 2014. https://doi.org/10.1007/s11947-013-10 48 -1.
  • V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–153, 1965.
  • Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, and S. Cheng, Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260, 2006. https://doi.org/10.1016/j.foodchem.2005.02.033.
  • D. Heimler, P. Vignolini, M. G. Dini, and A. Romani, Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. Journal of Agriculture and Food Chemistry, 53(8), 3053–3056, 2005. https://doi.org/10.1021/jf049001r.
  • L. Zhang and S. L. Kosaraju, Biopolymeric delivery system for controlled release of polyphenolic antioxidants. European Polymer Journal, 43(7), 2956–2966, 2007. https://doi.org/10.1016/j.eurpolymj.2007. 04.033.
  • K. Konecsni, Analysis and entrapment of select antioxidants from chokecherry and saskatoon berry fruits. Master Thesis, The University of Saskatchewan, Saskatchewan, Canada, 2011.
  • W. Brand-Williams, M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissens-chaft-und-Technologie, 28, 25–30, 1995. https://doi.org/10.1016/S0023-6438(95)8000 8-5.
  • C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, and Y. Jiang, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12), 1719–1726, 2003. https://doi.org/10. 1016/j.nutres.2003.08.005.
  • J. Z. Xu, S. Y. V. Yeung, Q. Chang, Y. Huang, and Z.-Y. Chen, Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. British Journal of Nutrition, 91(6), 873–881, 2004. https://doi.org/10.1079/BJN20041132.
  • S. Yerlikaya and H. Şen Arslan, Dondurularak ve püskürterek kurutulmuş süt tozlarının bazı mikrobiyolojik ve fizikokimyasal özelliklerinin karşılaştırılması. BEÜ Fen Bilimleri Dergisi, 8(2), 677–687, 2019.
  • İ. Tontul, F. Ergin, E. Eroğlu, A. Küçükçetin, and A. Topuz, Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169–176, 2018. https://doi.org/10.1016/j.idairyj.2018.06.002.
  • D. Yıldız Turgut and A. Bayır Yeğin, Kamkat tozunun fizikokimyasal özellikleri üzerine farklı kurutma uygulamalarının etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 23(4), 477–488, 2019. https://doi.org/10.2905 0/harranziraat.569808.
  • S. N. Dirim and G. Çalışkan, Determination of the effect of freeze drying process on the productıon of pumpkın (Cucurbita moschata) puree powder and the powder properties. Gıda, 37(4), 203–210, 2012.
  • E. Ergüney, Z. Gülsünoğlu, E. Fıratlıgil-Durmuş, and M. Kılıç-Akyılmaz, Karayemiş tozu fiziksel özelliklerinin iyileştirilmesi. Akademik Gıda, 13(2), 108–114, 2015.
  • S. Quispe-Condori, M. D. A. Saldaña, and F. Temelli, Microencapsulation of flax oil with zein using spray and freeze drying. LWT - Food Science and Technology, 44, 1880–1887, 2011. https://doi.org/ 10.1016/j.lwt.201 1.01.005.
  • T. Laokuldilok and N. Kanha, Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Food Science and Technology, 64(1), 405–411, 2015. https://doi.org/ 10.1016/j.lwt.2015.05.015.
  • G. Çalışkan, K. Ergün and S. N. Dirim, Freeze drying of kiwi (Actinidia deliciosa) puree and the powder properties. Italian Journal of Food Science, 27, 385–397, 2015. https://doi.org/10.14674/1120-1770/ijfs.v2 82.
  • İ. Türker, B. Koç, and H. İşleroğlu, Effect of spray-freeze drying process on physical properties of maltodextrin. Gıda, 43(2), 197–210, 2018. https://doi. org/10.15237/gida.GD17101.
  • L. Sturm, I. G. O. Črnivec, K. Istenič, A. Ota, P. Megušar, A. Slukan, M. Humar, S. Levic, V. Nedović, R. Kopinč, M. Deželak, A. P. Gonzales, and N. P. Ulrih, Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 116, 196–211, 2019. https://doi.org/ 10.1016/j.fbp.2019.05.008.
  • H. Baykal, K. Karais, G. Çalışkan Koç, and S. N. Dirim, Tarçın, keçiboynuzu ve zencefil ile zenginleştirilerek üretilmiş keçi sütü tozlarının özellikleri. Gıda, 43(4), 716–732, 2018. https://doi.org/ 10.15237/ gida.gd18046.
  • Y. R. R. S. Rezende, J. P. Nogueira, and N. Narain, Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254(February), 281–291, 2018. https://doi. org/10.1016/j.foodchem.2018.02.026.
  • I. P. Turkiewicz, A. Wojdyło, K. Tkacz, K. Lech, A. Michalska-Ciechanowska, and P. Nowicka, The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 323, 126830, 2020. https://doi.org/10.1016/j.foodchem. 2020.126830.
  • S. H. Omar, P. G. Kerr, C. J. Scott, A. S. Hamlin, and H. K. Obied, Olive (Olea europaea L.) biophenols: a nutriceutical against oxidative stress in SH-SY5Y cells. Molecules, 22, 1–20, 2017. https://doi.org/10.3390/ molecules22111858
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Gıda Mühendisliği
Yazarlar

Emine Nakilcioğlu-taş 0000-0003-4334-2900

Semih Ötleş Bu kişi benim 0000-0003-4571-8764

Yayımlanma Tarihi 15 Ocak 2021
Gönderilme Tarihi 21 Mayıs 2020
Kabul Tarihi 3 Kasım 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Nakilcioğlu-taş, E., & Ötleş, S. (2021). Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 140-149. https://doi.org/10.28948/ngumuh.740797
AMA Nakilcioğlu-taş E, Ötleş S. Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu. NÖHÜ Müh. Bilim. Derg. Ocak 2021;10(1):140-149. doi:10.28948/ngumuh.740797
Chicago Nakilcioğlu-taş, Emine, ve Semih Ötleş. “Zeytin çekirdeği antioksidanlarının Dondurarak Kurutma tekniği Ile mikroenkapsülasyonu: Toz ürünün Fiziksel Ve Kimyasal Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 1 (Ocak 2021): 140-49. https://doi.org/10.28948/ngumuh.740797.
EndNote Nakilcioğlu-taş E, Ötleş S (01 Ocak 2021) Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 140–149.
IEEE E. Nakilcioğlu-taş ve S. Ötleş, “Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 1, ss. 140–149, 2021, doi: 10.28948/ngumuh.740797.
ISNAD Nakilcioğlu-taş, Emine - Ötleş, Semih. “Zeytin çekirdeği antioksidanlarının Dondurarak Kurutma tekniği Ile mikroenkapsülasyonu: Toz ürünün Fiziksel Ve Kimyasal Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (Ocak 2021), 140-149. https://doi.org/10.28948/ngumuh.740797.
JAMA Nakilcioğlu-taş E, Ötleş S. Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2021;10:140–149.
MLA Nakilcioğlu-taş, Emine ve Semih Ötleş. “Zeytin çekirdeği antioksidanlarının Dondurarak Kurutma tekniği Ile mikroenkapsülasyonu: Toz ürünün Fiziksel Ve Kimyasal Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 1, 2021, ss. 140-9, doi:10.28948/ngumuh.740797.
Vancouver Nakilcioğlu-taş E, Ötleş S. Zeytin çekirdeği antioksidanlarının dondurarak kurutma tekniği ile mikroenkapsülasyonu: Toz ürünün fiziksel ve kimyasal karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2021;10(1):140-9.

download