Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması

Yıl 2021, , 420 - 425, 15.01.2021
https://doi.org/10.28948/ngumuh.742883

Öz

Grafen tabakalarının üretim yöntemlerine bakıldığında hem kalite ve yüksek yüzey alanına sahip grafenin sentezlenmesi açısından Kimyasal Buhar Depolama (Chemical Vapor Deposition, CVD) tekniği en sık kullanılan yöntemlerin başında gelmektedir. Öte yandan, kimyasal yöntemler kullanılarak elde edilebilen grafen tabakalar büyük ölçeklerde ve düşük maliyetle hazırlanabilmektedir. Dolayısıyla grafit tabaklardan üç boyutlu grafen hidrojel yapılarını kimyasal olarak üretmek için tercih edilen ve günümüzde de hala oldukça yaygın bir şekilde kullanılan başlıca yöntem Hummer’s metodu ile elde edilen grafen oksit (GO) katmanların hidrotermal içerisinde grafen-hidrojelere (GH-H) dönüştürülmesidir. Çalışmanın amacı, farklı üç boyutlu grafen hidrojel yapılarının hidrotermal yöntemle hazırlanması ve boyutsal özelliklerinin incelenmesini içermektedir. Elde edilen ürünlerin uygulanan yöntem aşamalarına göre karakterizasyonları Ultraviyole ve görünür ışık absorpsiyon spektroskopisi (UV-Vis), Atomik Kuvvet Mikroskopu (AFM), X-Işını Kırınım (XRD) yöntemi, Alan Yayılımlı-Taramalı Elektron Mikroskobu (FE-SEM) ve Raman analizi kullanılarak yapılmıştır.

Kaynakça

  • [1] H. Kuan-I, M. Boutchich, C.Y. Su, R. Moreddu, E.S.R. Marianathan, L. Montes and C.S. Lai, A self aligned high mobility graphene transistor: decoupling the channel with fluorographene to reduce scattering. Advanced Materials, 27, pp. 6519–25, 2015. https://doi.org/ 10.1002/adma.201502544
  • [2] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Experimental review of graphene. ISRN Condensed Matter Physics. International Scholarly Research Network, 1–56, 2012. https://doi.org/10.5402/2012/501686
  • [3] P.R. Wallace, The band theory of graphite. Physical Review, 71, 622–34, 1947.
  • [4] B. Seger and P.V. Kamat, Electrocatalytically active graphene- platinum nanocomposites. role of 2-d carbon support in PEM Fuel Cells. J, Phys. Chem. C, 113, 7990-7995, 2009.https://doi.org/10.1021/jp900360k
  • [5] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang and P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 48, 1124–1130, 2010. https://doi.org/10.1016/ j.carbon.2009.11.034
  • [6] J. Du. H.M. Cheng, The fabrication, properties, and uses of graphene. Polymer Composites. Macromol. Chem. Phys., 213, 1060– 1077, 2012. https://doi.org/ 10.1002/macp.201200029
  • [7] Y.J. Kim, B.K. Kim, Synthesis and properties of silanized waterborne polyurethane/graphene nanocomposites,. Colloid Polym. Sci., 292, 51–58, 2014. https://doi.org/10.1007/s00396-013- 3054-2
  • [8] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., vol. 22, 3906–24, 2010.
  • [9] M.J. Allen, V.C. Tung and R.B. Kaner, Honeycomb carbon: a review of graphene. chem. Rev., 110, 132–145, 2009.
  • [10] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci., 4, 1113–32, 2011. https://doi.org/10.1039/C0EE00683A
  • [11] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem., Int. Ed., vol. 48, pp. 7752–77, 2009.
  • [12] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J. R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci., 3, 1238–1251, 2010. https://doi.org/10.1039/C0EE00004C
  • [13] L.L. Zhang, R. Zhou and X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem., 20, 5983–92, 2010. https://doi.org/ 10.1039/C000417K
  • [14] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906- 24,2010.https://doi.org/10.1002/adma.201001068
  • [15] L. Zhang, G. Shi, Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. J. Phys. Chem. C, 115, 17206–212, 2011.
  • [16] W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339, 1958. https://doi.org/10.1021/ja01539a017
  • [17] J. Meihua, H.K. Tae, C.L. Seong, L.D. Dinh, J.S. Hyeon, W.J. Young., K.J. Hae, C. Jian, X. Sishen, H.L. Young, Facile Physical Route to Highly Crystalline Graphene. Adv. Funct. Mater., 21, 3496–3501, 2011.
  • [18] H.A. Seyed, M.G. Mohsen, B.Z. Qing, K. Jang-Kyo, Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions. Adv. Funct. Mater. 2011, 21,2978–88, 2011.https://doi.org/10.1002/adfm.20110 0448
  • [19] S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Microbial Reduction of Graphene Oxide by Escherichia coli: A Green Chemistry Approach. Colloids Surf. B, 102, 772–777, 2013. https://doi.org/10.1016/ j.colsurfb.2012.09.011
  • [20] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S. Kim, Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl. Phys. A, 106, 501-6, 2012.
  • [21] M.S. Dresselhaus, A.J.H. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751-58, 2010. https://doi.org/10.1021/nl904286r

Preparation of high conductive different sizes of three dimensional graphene hydrogels

Yıl 2021, , 420 - 425, 15.01.2021
https://doi.org/10.28948/ngumuh.742883

Öz

The production of graphene layers, both quality and high production cost, is obtained from Chemical Vapor Deposition (CVD) technique. On the other hand, graphene layers can be prepared using wet chemical methods on a large scale and at low cost. Therefore, the main method preferred for the chemical production of three-dimensional graphene hydrogel structures from graphite plates and still widely used today is the conversion of graphene oxide (GO) layers obtained by the Hummer's method to graphene hydrogel (GH-H) in hydrothermal. The aim of the study includes preparation of different three dimensional graphene hydrogel structures by hydrothermal method. Characterization of the products was made with the applied method steps, respectively; Ultraviolet and visible light absorption spectroscopy (UV-Vis), Atomic Force Microscope (AFM), X-Ray Diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM) and Raman analysis.

Kaynakça

  • [1] H. Kuan-I, M. Boutchich, C.Y. Su, R. Moreddu, E.S.R. Marianathan, L. Montes and C.S. Lai, A self aligned high mobility graphene transistor: decoupling the channel with fluorographene to reduce scattering. Advanced Materials, 27, pp. 6519–25, 2015. https://doi.org/ 10.1002/adma.201502544
  • [2] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Experimental review of graphene. ISRN Condensed Matter Physics. International Scholarly Research Network, 1–56, 2012. https://doi.org/10.5402/2012/501686
  • [3] P.R. Wallace, The band theory of graphite. Physical Review, 71, 622–34, 1947.
  • [4] B. Seger and P.V. Kamat, Electrocatalytically active graphene- platinum nanocomposites. role of 2-d carbon support in PEM Fuel Cells. J, Phys. Chem. C, 113, 7990-7995, 2009.https://doi.org/10.1021/jp900360k
  • [5] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang and P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 48, 1124–1130, 2010. https://doi.org/10.1016/ j.carbon.2009.11.034
  • [6] J. Du. H.M. Cheng, The fabrication, properties, and uses of graphene. Polymer Composites. Macromol. Chem. Phys., 213, 1060– 1077, 2012. https://doi.org/ 10.1002/macp.201200029
  • [7] Y.J. Kim, B.K. Kim, Synthesis and properties of silanized waterborne polyurethane/graphene nanocomposites,. Colloid Polym. Sci., 292, 51–58, 2014. https://doi.org/10.1007/s00396-013- 3054-2
  • [8] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., vol. 22, 3906–24, 2010.
  • [9] M.J. Allen, V.C. Tung and R.B. Kaner, Honeycomb carbon: a review of graphene. chem. Rev., 110, 132–145, 2009.
  • [10] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci., 4, 1113–32, 2011. https://doi.org/10.1039/C0EE00683A
  • [11] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem., Int. Ed., vol. 48, pp. 7752–77, 2009.
  • [12] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J. R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci., 3, 1238–1251, 2010. https://doi.org/10.1039/C0EE00004C
  • [13] L.L. Zhang, R. Zhou and X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem., 20, 5983–92, 2010. https://doi.org/ 10.1039/C000417K
  • [14] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906- 24,2010.https://doi.org/10.1002/adma.201001068
  • [15] L. Zhang, G. Shi, Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. J. Phys. Chem. C, 115, 17206–212, 2011.
  • [16] W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339, 1958. https://doi.org/10.1021/ja01539a017
  • [17] J. Meihua, H.K. Tae, C.L. Seong, L.D. Dinh, J.S. Hyeon, W.J. Young., K.J. Hae, C. Jian, X. Sishen, H.L. Young, Facile Physical Route to Highly Crystalline Graphene. Adv. Funct. Mater., 21, 3496–3501, 2011.
  • [18] H.A. Seyed, M.G. Mohsen, B.Z. Qing, K. Jang-Kyo, Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions. Adv. Funct. Mater. 2011, 21,2978–88, 2011.https://doi.org/10.1002/adfm.20110 0448
  • [19] S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Microbial Reduction of Graphene Oxide by Escherichia coli: A Green Chemistry Approach. Colloids Surf. B, 102, 772–777, 2013. https://doi.org/10.1016/ j.colsurfb.2012.09.011
  • [20] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S. Kim, Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl. Phys. A, 106, 501-6, 2012.
  • [21] M.S. Dresselhaus, A.J.H. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751-58, 2010. https://doi.org/10.1021/nl904286r
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Malzeme ve Metalürji Mühendisliği
Yazarlar

Ersan Harputlu 0000-0002-2140-9070

Yayımlanma Tarihi 15 Ocak 2021
Gönderilme Tarihi 26 Mayıs 2020
Kabul Tarihi 10 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Harputlu, E. (2021). Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 420-425. https://doi.org/10.28948/ngumuh.742883
AMA Harputlu E. Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması. NÖHÜ Müh. Bilim. Derg. Ocak 2021;10(1):420-425. doi:10.28948/ngumuh.742883
Chicago Harputlu, Ersan. “Yüksek iletkenliğe Sahip Farklı üç Boyutlu Grafen Hidrojellerin hazırlanması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 1 (Ocak 2021): 420-25. https://doi.org/10.28948/ngumuh.742883.
EndNote Harputlu E (01 Ocak 2021) Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 420–425.
IEEE E. Harputlu, “Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 1, ss. 420–425, 2021, doi: 10.28948/ngumuh.742883.
ISNAD Harputlu, Ersan. “Yüksek iletkenliğe Sahip Farklı üç Boyutlu Grafen Hidrojellerin hazırlanması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (Ocak 2021), 420-425. https://doi.org/10.28948/ngumuh.742883.
JAMA Harputlu E. Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması. NÖHÜ Müh. Bilim. Derg. 2021;10:420–425.
MLA Harputlu, Ersan. “Yüksek iletkenliğe Sahip Farklı üç Boyutlu Grafen Hidrojellerin hazırlanması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 1, 2021, ss. 420-5, doi:10.28948/ngumuh.742883.
Vancouver Harputlu E. Yüksek iletkenliğe sahip farklı üç boyutlu grafen hidrojellerin hazırlanması. NÖHÜ Müh. Bilim. Derg. 2021;10(1):420-5.

download