Yarı-statik batma yükü altında reçine pimi ile güçlendirilmiş denizel sandviç kompozit yapıların mekanik özelliklerinin incelenmesi
Yıl 2024,
Cilt: 13 Sayı: 2, 690 - 696, 15.04.2024
Fatih Balıkoğlu
,
Tayfur Kerem Demircioğlu
,
Mehmet Özer
,
Ali Işıktaş
Öz
Bu çalışma, pimle güçlendirilmiş polivinil klorür köpük çekirdekli ve E-cam tabakalı denizel sandviç kompozitlerinin batma davranışını deneysel olarak incelemeyi amaçlamaktadır. Batma ucu çapı, reçine pim çapı ve diziliminin sandviç panellerin kuvvet-yer değiştirme, maksimum temas kuvveti ve emilen enerji değerleri üzerindeki etkileri batma testleri ile değerlendirilmiştir. Deneyler boyunca pim çapı Ø2 mm'den Ø4 mm'ye çıkması ile temas kuvvetleri de artmıştır Pim çapları arasındaki mesafe 12 mm'den 16 mm'ye ve 18 mm'ye artışı ile temas kuvvetleri azalmıştır. Ek olarak, reçine pimi ve batma ucu çapı arttıkça emilen enerji değerleri de artmıştır. Pimlerin 12 mm mesafeye yerleştirilmesi, malzemenin Ø12,7 mm ve Ø20 mm batma uçları için daha fazla enerji emmesine olanak tanır. 8 mm çapında ve 12 mm aralıklı delikler, kritik alanlardaki ağırlık artışına rağmen Ø12,7'den Ø20 mm'ye kadar nesne temasına karşı nüfuz etmeye karşı önemli bir başlangıç direnci sağlar. Herhangi bir hasar modunu tespit etmek için sandviç numunelerinin batma testleri sonrası kesitleri üzerinde görsel bir inceleme gerçekleştirildi. Hasar modları girintinin boyutuna ve köpük çekirdeğindeki delik düzenine bağlı olarak değişmiştir.
Kaynakça
- F. Rubino, A. Nisticò, F. Tucci, and P. Carlone, Marine application of fiber reinforced composites: A review. Journal of Marine Science and Engineering, 8 (1), 26, 2020. https://doi.org/10.3390/jmse8010026.
- G. Palomba, G. Epasto, and V. Crupi, Lightweight sandwich structures for marine applications: a review. Mechanics of Advanced Materials and Structures, 1-26, 2021. https://doi.org/10.1080/15376494.2021.1941448
- M. S. H. Fatt and D. Sirivolu, Marine composite sandwich plates under air and water blasts. Marine Structures, 56, 163-185, 2017. https://doi.org/10.1016/j.marstruc.2017.08.004.
- M. Roseman, R. Martin, and G. Morgan, Composites in offshore oil and gas applications. in Marine Applications of Advanced Fibre-Reinforced Composites: Elsevier, 233-257, 2016. https://doi.org/10.1016/B978-1-78242-250-1.00010-7.
- N. Gupta, S. E. Zeltmann, D. D. Luong, and M. Doddamani, Core materials for marine sandwich structures. Marine Composites, 187, 2018.
- Q. Ma, M. Rejab, J. Siregar, and Z. Guan, A review of the recent trends on core structures and impact response of sandwich panels. Journal of Composite Materials, 55 (18), 2513-2555, 2021. https://doi.org/10.1177/0021998321990734.
- L. Sutherland, A review of impact testing on marine composite materials: Part I–Marine impacts on marine composites. Composite Structures, 188, 197-208, 2018. https://doi.org/10.1016/j.compstruct.2017.12.073.
- L. Sutherland and C. G. Soares, The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates. Composites Part B: Engineering, 43 (3), 1459-1467, 2012. https://doi.org/10.1016/j.compositesb.2012.01.002
- H. Zniker, B. Ouaki, S. Bouzakraoui, M. EbnTouhami, and H. Mezouara, Energy absorption and damage characterization of GFRP laminated and PVC-foam sandwich composites under repeated impacts with reduced energies and quasi-static indentation. Case studies in construction materials, 16, e00844, 2022. https://doi.org/10.1016/j.cscm.2021.e00844.
- V. Rizov and A. Mladensky, Influence of the foam core material on the indentation behavior of sandwich composite panels. Cellular polymers, 26 (2), 117-131, 2007. https://doi.org/10.1177/0262489307026002.
- M. Kazemi, Experimental investigation on the energy absorption characteristics of sandwich panels with layering of foam core under quasi-static punch loading. Mechanics of Advanced Materials and Structures, 29 (21), 3067-3075, 2022. https://doi.org/10.1080/15376494.2021.1885770.
- Ł. Święch, R. Kołodziejczyk, and N. Stącel, Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures. Materials, 14 (1), 12, 2020. https://doi.org/10.3390/ma14010012.
- A. Ahmed and L. Wei, Effects of indenter tips of quasi-static indentation damage of foam Sandwich Composites. Advanced Materials Research, 1061, 215-219, 2015. https://doi.org/10.4028/www.scientific.net/AMR.1061-1062.215.
- C. D. M. Muscat-Fenech, J. Cortis, and C. Cassar, Impact damage testing on composite marine sandwich panels, part 1: Quasi-static indentation. Journal of Sandwich Structures & Materials, 16 (4), 341-376, 2014. https://doi.org/10.1177/109963621452995.
- M. Garrido, R. Teixeira, J. Correia, and L. Sutherland, Quasi-static indentation and impact in glass-fibre reinforced polymer sandwich panels for civil and ocean engineering applications. Journal of Sandwich Structures & Materials, 23 (1), 194-221, 2021. https://doi.org/10.1177/1099636219830134.
- B. Abdi, S. Azwan, M. Abdullah, A. Ayob, and Y. Yahya, Comparison of foam core sandwich panel and through‐thickness polymer pin–reinforced foam core sandwich panel subject to indentation and flatwise compression loadings. Polymer Composites, 37 (2), 612-619, 2016. https://doi.org/10.1002/pc.23218
- A. Eyvazian et al., Mechanical behavior of resin pin-reinforced composite sandwich panels under quasi-static indentation and three-point bending loading conditions. Journal of Sandwich Structures & Materials, 23 (6), 2127-2145, 2021. https://doi.org/10.1177/109963622090975.
- F. Balıkoğlu, T. K. Demircioğlu, and H. Kandaş, Experimental study on the behaviour of grid-scored foam-cored sandwich composites under low-velocity and quasi-static punch shear loads. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237 (4), 803-811, 2023. https://doi.org/10.1177/1464420722112482
- Data sheet for Airex C70. 75 PVC foam. https://www.metyx.com/wp-content/uploads/2020/10/TDS-AIREX-C70-E-04.2020.pdf (accessed 28.12.2023).
Investigation on the mechanical properties of resin pin-reinforced marine sandwich composite structures under quasi-static indentation load
Yıl 2024,
Cilt: 13 Sayı: 2, 690 - 696, 15.04.2024
Fatih Balıkoğlu
,
Tayfur Kerem Demircioğlu
,
Mehmet Özer
,
Ali Işıktaş
Öz
This study aims to experimentally examine the indentation behaviour of marine sandwich composites with pin-reinforced polyvinyl chloride foam core and E-glass face sheets. The effects of indenter diameter, resin pin diameter, and arrangement on force-displacement, maximum contact force, and absorbed energy values of sandwich panels were evaluated by the indentation tests. Throughout the experiments, the contact forces increased as the pin diameter increased from Ø2 mm to Ø4 mm. The contact forces decreased as the distance between pin diameters increased from 12 mm to 16 mm and 18 mm. Additionally, the values of absorbed energy increased as the diameters of the resin pin and indenter increased. Placing pins at a distance of 12 mm allows the material to absorb more energy for Ø12.7 mm and Ø20 mm indenter tips. The 8 mm diameter and 12 mm spacing holes provide significant initial resistance to penetration, despite the increase in weight in critical areas, against object contact from Ø12.7 to Ø20 mm. A visual inspection took place on the post-indentation cross-sections of the sandwich specimens to detect any damage modes. Damage modes varied depending on the size of the indenter and the hole pattern in the foam core.
Kaynakça
- F. Rubino, A. Nisticò, F. Tucci, and P. Carlone, Marine application of fiber reinforced composites: A review. Journal of Marine Science and Engineering, 8 (1), 26, 2020. https://doi.org/10.3390/jmse8010026.
- G. Palomba, G. Epasto, and V. Crupi, Lightweight sandwich structures for marine applications: a review. Mechanics of Advanced Materials and Structures, 1-26, 2021. https://doi.org/10.1080/15376494.2021.1941448
- M. S. H. Fatt and D. Sirivolu, Marine composite sandwich plates under air and water blasts. Marine Structures, 56, 163-185, 2017. https://doi.org/10.1016/j.marstruc.2017.08.004.
- M. Roseman, R. Martin, and G. Morgan, Composites in offshore oil and gas applications. in Marine Applications of Advanced Fibre-Reinforced Composites: Elsevier, 233-257, 2016. https://doi.org/10.1016/B978-1-78242-250-1.00010-7.
- N. Gupta, S. E. Zeltmann, D. D. Luong, and M. Doddamani, Core materials for marine sandwich structures. Marine Composites, 187, 2018.
- Q. Ma, M. Rejab, J. Siregar, and Z. Guan, A review of the recent trends on core structures and impact response of sandwich panels. Journal of Composite Materials, 55 (18), 2513-2555, 2021. https://doi.org/10.1177/0021998321990734.
- L. Sutherland, A review of impact testing on marine composite materials: Part I–Marine impacts on marine composites. Composite Structures, 188, 197-208, 2018. https://doi.org/10.1016/j.compstruct.2017.12.073.
- L. Sutherland and C. G. Soares, The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates. Composites Part B: Engineering, 43 (3), 1459-1467, 2012. https://doi.org/10.1016/j.compositesb.2012.01.002
- H. Zniker, B. Ouaki, S. Bouzakraoui, M. EbnTouhami, and H. Mezouara, Energy absorption and damage characterization of GFRP laminated and PVC-foam sandwich composites under repeated impacts with reduced energies and quasi-static indentation. Case studies in construction materials, 16, e00844, 2022. https://doi.org/10.1016/j.cscm.2021.e00844.
- V. Rizov and A. Mladensky, Influence of the foam core material on the indentation behavior of sandwich composite panels. Cellular polymers, 26 (2), 117-131, 2007. https://doi.org/10.1177/0262489307026002.
- M. Kazemi, Experimental investigation on the energy absorption characteristics of sandwich panels with layering of foam core under quasi-static punch loading. Mechanics of Advanced Materials and Structures, 29 (21), 3067-3075, 2022. https://doi.org/10.1080/15376494.2021.1885770.
- Ł. Święch, R. Kołodziejczyk, and N. Stącel, Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures. Materials, 14 (1), 12, 2020. https://doi.org/10.3390/ma14010012.
- A. Ahmed and L. Wei, Effects of indenter tips of quasi-static indentation damage of foam Sandwich Composites. Advanced Materials Research, 1061, 215-219, 2015. https://doi.org/10.4028/www.scientific.net/AMR.1061-1062.215.
- C. D. M. Muscat-Fenech, J. Cortis, and C. Cassar, Impact damage testing on composite marine sandwich panels, part 1: Quasi-static indentation. Journal of Sandwich Structures & Materials, 16 (4), 341-376, 2014. https://doi.org/10.1177/109963621452995.
- M. Garrido, R. Teixeira, J. Correia, and L. Sutherland, Quasi-static indentation and impact in glass-fibre reinforced polymer sandwich panels for civil and ocean engineering applications. Journal of Sandwich Structures & Materials, 23 (1), 194-221, 2021. https://doi.org/10.1177/1099636219830134.
- B. Abdi, S. Azwan, M. Abdullah, A. Ayob, and Y. Yahya, Comparison of foam core sandwich panel and through‐thickness polymer pin–reinforced foam core sandwich panel subject to indentation and flatwise compression loadings. Polymer Composites, 37 (2), 612-619, 2016. https://doi.org/10.1002/pc.23218
- A. Eyvazian et al., Mechanical behavior of resin pin-reinforced composite sandwich panels under quasi-static indentation and three-point bending loading conditions. Journal of Sandwich Structures & Materials, 23 (6), 2127-2145, 2021. https://doi.org/10.1177/109963622090975.
- F. Balıkoğlu, T. K. Demircioğlu, and H. Kandaş, Experimental study on the behaviour of grid-scored foam-cored sandwich composites under low-velocity and quasi-static punch shear loads. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237 (4), 803-811, 2023. https://doi.org/10.1177/1464420722112482
- Data sheet for Airex C70. 75 PVC foam. https://www.metyx.com/wp-content/uploads/2020/10/TDS-AIREX-C70-E-04.2020.pdf (accessed 28.12.2023).