Derleme
BibTex RIS Kaynak Göster

Anthocyanins in grains and their effects on health

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1524316

Öz

Anthocyanins are polyphenolic compounds and are the most important group of flavonoid pigments It is widely found in agricultural products. Anthocyanins occur in all advanced plants' flowers, fruits, leaves, stems, and roots. The colors of anthocyanins vary depending on the acidity of the food. Most anthocyanins turn red under acidic conditions and blue in low-acid conditions. They are not found free in foods. They are found bound together with some organic components. It is known that anthocyanins have many beneficial aspects such as anti-inflammatory, vascular protection, normal vascular permeability, platelet aggregation, tumor development, antiulcer, diabetes control, and protection against UV radiation. In vivo and in vitro studies confirm these benefits. When the research results were examined, it was observed that anthocyanin rates increased as the color intensity in grains increased. According to the variety differences in cereals, cyanidin, pelargonidin, peonidin, delphinidin, and malvidin group anthocyanins were detected in different amounts. In this study, the presence of anthocyanins in cereals, which have limited use in technological applications but have an important place in human health, and their effects on human health were compiled.

Kaynakça

  • J. Harbone, A. C. Williams, Anthocyanins and other flavonoides. 15, pp. 631, 1998.
  •         K. E. Schwinn, K. M. Davies, Flavonoids, in plant pigments and their manipulation. Annual Plant Reviews. Blackwell Publishing, 92, 149, 2004.
  •         İ. Koca, B. Karadeniz, S. Tural, Antosiyaninlerin antioksidan aktivitesi. Türkiye, 9, 24-26, 2006.
  •         M. Rein, Copigmentation reactions and color stability of berry anthocyanins, Doctoral dissertation, Helsingin yliopiston, University of Helsinki, 2005.
  •         M. Paulsmeyer, L. Chatham, T. Becker, M. West, L. West, J. Juvik, Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasms. Journal of Agricultural and Food Chemistry, 65(21), 4341–4350, 2017. https://doi.org/10.1021/acs.jafc.7b00771
  •         M. T. Escribano-Bailón, C. Santos-Buelga, J. C. Rivas-Gonzalo, Anthocyanins in cereals. Journal of Chromatography A, 1054(1-2), 129–141, 2004. https://doi.org/10.1016/j.chroma.2004.08.152
  •         D. B. Ficco, V. De Simone, A. M. De Leonardis, V. Giovanniello, M. A. Del Nobile, L. Padalino, L. Lecce, G. M. Borrelli, P. De Vita, Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chemistry, 205, 187–195, 2016. https://doi.org/10.1016/j.foodchem.2016.03.014
  •         M. J. Kim, J. N. Hyun, J. A. Kim, J. C. Park, M. Y. Kim, J. G. Kim, S. J. Lee, S. C. Chun, I. M. Chung, Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 55(12), 4802–4809, 2007. https://doi.org/10.1021/jf0701943
  •         S. L. Dwivedi, A. K. Mattoo, M. Garg, S. Dutt, B. Singh, R. Ortiz, Developing germplasm and promoting consumption of anthocyanin-rich grains for health benefits. Frontiers in Sustainable Food Systems, 6, 867897, 2022. https://doi.org/10.3389/fsufs.2022.867897
  •       M. Garg, NABIMG-11-Black (BW/2* PBW621) (IC0620916; INGR17003), a wheat (Triticum aestivum) germplasm with black grain color (purple pericarp + blue aleurone). Indian Journal of Plant Genetic Resources, 31, 334–335, 2018.
  •       M. Garg, NABIMG-10-Purple (BW/2* PBW621) (IC0620915; INGR17002), a wheat (Triticum aestivum) germplasm with purple grain (pericarp) color. Indian Journal of Plant Genetic Resources, 333–334, 2018.
  •       M. Garg, NABIMG-9-Blue; BW/2*/PBW621 (IC0620914; INGR17001), a wheat (Triticum aestivum) germplasm with blue grain (aleurone) colour. Indian Journal of Plant Genetic Resources, 332–333, 2018.
  •       F. Zhu, Anthocyanins in cereals: Composition and health effects. Food Research International (Ottawa, Ont.), 109, 232–249, 2018. https://doi.org/10.1016/j.foodres.2018.04.015
  •       P. A. Zykin, E. A. Andreeva, A. N. Lykholay, N. V. Tsvetkova, A. V. Voylokov, Anthocyanin Composition and Content in Rye Plants with Different Grain Color. Molecules (Basel, Switzerland), 23(4), 948, 2018. https://doi.org/10.3390/molecules23040948
  •       M. Paulsmeyer, J. Juvik, Functional characterization of an anthocyanin dimalonyltransferase in maize. Molecules, 26(7), 2020, (2021). https://doi.org/10.3390/molecules26072020
  •       S. Krüger, G. E. Morlock, Fingerprinting and characterization of anthocyanins in 94 colored wheat varieties and blue aleurone and purple pericarp wheat crosses. Journal of Chromatography A, 1538, 75-85, 2018. https://doi.org/10.1016/j.chroma.2018.01.032
  •       K. V. Strygina, A. Börner, E. K. Khlestkina, Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biology, 17(1), 1-9, 2017. https://doi.org/10.1186/s12870-017-1122-3
  •       X. Wu, R. L. Prior, Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization− tandem mass spectrometry in common foods in the United States: Vegetables, nuts, and grains. Journal of Agricultural and Food Chemistry, 53(8), 3101-3113, 2005. https://doi.org/10.1021/jf0478861
  •       T. T. Efremova, S. V. Morozov, E. I. Chernyak, E. V. Chumanova, Combining the genes of blue aleurone and purple pericarp in the genotype of spring bread wheat Saratovskaya 29 to increase anthocyanins in grain. Journal of Cereal Science, 109, 103616, 2023. https://doi.org/10.1016/j.jcs.2022.103616
  •       M. P. Barbosa, R. de Araújo Miguel, R. R. P. da Conceição, C. N. Kobori, V. A. V. Queiroz, Optimization of extraction, characterization, and stability of the natural pigment from sorghum genotype SC 319. Brazilian Journal of Development, 9(3), 10783-10798, 2023. https://doi.org/10.34117/bjdv9n3-126
  •       S. Suriano, M. Savino, P. Codianni, A. Iannucci, G. Caternolo, M. Russo, N. Pecchioni, A. Troccoli, Anthocyanin profile and antioxidant capacity in coloured barley. International Journal of Food Science Technology, 54(7), 2478-2486, 2019. https://doi.org/10.1111/ijfs.14203
  •       O. Y. Tereshchenko, T. A. Pshenichnikova, E. A. Salina, E. K. Khlestkina, Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal research communications, 40, 210-214, 2012. https://doi.org/10.1556/CRC.40.2012.2.5
  •       V. Taleon, L. Dykes, W. L. Rooney, L. W. Rooney, Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal of Cereal Science, 56(2), 470-475, 2012. https://doi.org/10.1016/j.jcs.2012.05.001
  •       Q. Zhu, S. Yu, D. Zeng, H. Liu, H. Wang, Z. Yang, X. Xie, R. Shen, J. Tan, H. Li, X. Zhao, Q. Zhang, Y. Chen, J. Guo, L. Chen, Y. G. Liu, Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. Molecular plant, 10(7), 918–929, 2017.https://doi.org/10.1016/j.molp.2017.05.008
  •       H. Wang, D. Liu, Y. Ji, Y. Liu, L. Xu, Y. Guo, Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high‐fat and cholesterol diet. Molecular Nutrition Food Research, 64(8), 1900876, 2020. https://doi.org/10.1002/mnfr.201900876
  •       S. Sharma, P. Khare, A. Kumar, V. Chunduri, A. Kumar, P. Kapoor,  P. Mangal, K. K. Kondepudi,  M. Bishnoi, M. Garg, Anthocyanin‐biofortified colored wheat prevents high-fat diet-induced alterations in mice: nutrigenomics studies. Molecular Nutrition Food Research, 64(13), 1900999, 2020. https://doi.org/10.1002/mnfr.20190999
  •       S. Fabroni, G. Ballistreri, M. Amenta, F.V. Romeo, P. Rapisarda, Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes, and cereals. Journal of the Science of Food and Agriculture, 96, 4713–4723, 2016.  https://doi.org/10.1002/jsfa.7708
  •       Y.F. Chen, M.A. Shibu, M.J. Fan, M.C. Chen, V.P. Viswanadha, Y.L. Lin, C.H. Lai, K.H. Lin, T.J. Ho, W.W. Kuo, C.H. Huang, Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J. Nutr. Biochem., 31, 98–105, 2016. https://doi.org/10.1016/j.jnutbio.2015.12.020
  •       W. Chen, D. Müller, E. Richling, M. Wink, Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. Journal of Agricultural and Food Chemistry, 61(12), 3047–3053, 2013. https://doi.org/10.1021/jf3054643
  •       Y. Zuo, C. Peng, Y. Liang, K. Y. Ma, H. Yu, H.Y.E. Chan, Z. Y. Chen, Black rice extract extends the lifespan of fruit flies. Food Function, 3(12), 1271–1279, 2012. https://doi.org/10.1039/c2fo30135k
  •       G. H. Yıldırım, F. Öner, Mısır danesinin fiziksel ve besinsel yapısı. Harman Dergisi, 92, 68-74, 2020.
  •       F. Lao, M. M. Giusti, Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: Method comparison and correlation. Food Analytical Methods, 9, 1367–1380, 2016. https://doi.org/10.1007/s12161-015-0318-0
  •       A. Collison, L. Yang, L. Dykes, S. Murray, J. M. Awika, Influence of Genetic Background on Anthocyanin and Copigment Composition and Behavior during Thermoalkaline Processing of Maize. Journal of Agricultural and Food Chemistry, 63(22), 5528–5538, 2015. https://doi.org/10.1021/acs.jafc.5b00798
  •       B. Harakotr, B. Suriharn, R. Tangwongchai, M. P. Scott, K. Lertrat, Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking." Food Chemistry, 164,510-517, 2014. https://doi.org/10.1016/j.foodchem.2014.05.069
  •       G. A. Camelo-Méndez, E. Agama-Acevedo, M. M. Sanchez-Rivera, L. A. Bello-Pérez, Effect on in vitro starch digestibility of Mexican blue maize anthocyanins. Food Chemistry, 211, 281-284, 2016. https://doi.org/10.1016/j.foodchem.2016.05.024
  •       S. Zilić, A. Serpen, G. Akıllıoğlu, V. Gökmen, J. Vančetović, Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224–1231, 2012. https://doi.org/10.1021/jf204367z
  •       M. P. Georgiana, S. Muste, O. Ranta, A. Molnar, A. D. Păcurar, Anthocyanins in maize (Zea mays): composition and health effects-A Review. Hop Med Plants, 27(1-2), 50-56, 2019.
  •       E. Mackon, G. C. J. D. E. Mackon, Y. Ma, M. H. Kashif, N., Ali, B. Usman, P. Liu, Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis. Biomolecules, 11(3), 394, 2021 https://doi.org/10.3390/biom11030394
  •       S. Jiamyangyuen, N. Nuengchamnong, P. Ngamdee, Bioactivity and chemical components of Thai rice in five stages of grain development. Journal of Cereal Science, 74, 136-144, 2017. https://doi.org/10.1016/j.jcs.2017.01.021
  •       M. H. Chen, A. M. McClung, C. J. Bergman, Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors. Journal of Cereal Science, 77, 110-119, 2017. https://doi.org/10.1016/j.jcs.2017.07.010
  •       J. Hao, H. Zhu, Z. Zhang, S. Yang, H. Li, Identification of anthocyanins in black rice (Oryza sativa L.) by UPLC/Q-TOF-MS and their in vitro and in vivo antioxidant activities. Journal of Cereal Science, 64, 92–99,2015.  https://doi.org/10.1016/j.jcs.2015.05.003 
  •       M. Zaupa, L. Calani, D. Del Rio, F. Brighenti, N. Pellegrini, Characterization of total antioxidant capacity and (poly) phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chemistry, 187, 338-347, 2015. https://doi.org/10.1016/j.foodchem.2015.04.055
  •       Y. Shao, F. Xu, X. Sun, J. Bao, T. Beta, Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59(2), 211–218, 2014.  https://doi.org/10.1016/j.jcs.2014.01.004
  •       M. Bordiga, S. Gomez-Alonso, M. Locatelli, F Travaglia, J. D. Coïsson, I. Hermosin-Gutierrez, M. Arlorio, Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Research International, 65, 282-290, 2014. https://doi.org/10.1016/j.foodres.2014.03.007
  •       Z. Hou, P. Qin, Y. Zhang, S. Cui, G. Ren, Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691-697, 2013. https://doi.org/10.1016/j.foodres.2011.07.037
  •       X. Q. Chen, N. Nagao, T. Itani, K. Irifune, Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chemistry, 135(4), 2783-2788, 2012. https://doi.org/10.1016/j.foodchem.2012.06.098
  •       T. Frank, B. Reichardt, Q. Shu, K. H. Engel, Metabolite profiling of colored rice (Oryza sativa L.) grains. Journal of Cereal Science, 55(2), 112-119, 2012. https://doi.org/10.1016/j.jcs.2011.09.009
  •       M. Hiemori, E. Koh, A. E. Mitchell, Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). Journal of Agricultural and Food Chemistry, 57(5), 1908-1914, 2009. https://doi.org/10.1021/jf803153z
  •       E. S. M. Abdel-Aal, J. C. Young, I. Rabalski, Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54(13), 4696-4704, 2006. https://doi.org/10.1021/jf0606609
  •       P. Goufo, H. Trindade, Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ‐oryzanol, and phytic acid. Food Science Nutrition, 2(2), 75-104, 2014. https://doi.org/10.1002/fsn3.86
  •       M. Garg, M. Chawla, V. Chunduri, R. Kumar, S. Sharma, N. K. Sharma, N. Kaur, A. Kumar, J. K. Mundey, M. K. Saini, S. P. Singh, Tane renklerinin elit buğday çeşitlerine aktarılması ve karakterizasyonu. Journal of Cereal Science, 71:138–44, 2016. https://doi.org/10.1016/j.jcs.2016.08.004
  •       D. B. Ficco, V. De Simone, S. A. Colecchia, I. Pecorella, C. Platani, F. Nigro, F. Finocchiaro, R. Papa P. De Vita, Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. Journal ofagricultural and food chemistry, 62(34), 8686-8695, 2014. https://doi.org/10.1021/jf5003683
  •       A. C. Zeven, Wheats with purple and blue grains: A Review. Euphytica, 56, 243-258, 1991.
  •       V. Burešová, D. Kopecký, J. Bartoš, P. Martinek, N. Watanabe, T. Vyhnánek, J. Doležel, Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 128, 273-282, 2015.
  •       L. A. Morrison, R. J. Metzger, A. J. Lukaszewski, Origin of the blue‐aleurone gene in Sebesta Blue wheat genetic stocks and a protocol for its use in apomixis screening. Crop Science, 44(6), 2063-2067, 2004. https://doi.org/10.2135/cropsci2004.2063
  •       T. N., Er, N. Y. Ayhan, Bazı yerel buğday türlerinin ve kefirin ekmek yapımında kullanımı. Toros University Journal of Food Nutrition and Gastronomy, 2(1), 43-51, 2023.
  •       S. Kaur, N. Sharma, P. Kapoor, V. Chunduri, AK. Pandey, M. Garg, Spotlight on the overlapping routes and partners for anthocyanin transport in plants. Physiologia Plantarum 2021, 171(4): 868-881 https://doi.org/10.1111/ppl.13378
  •       M. Garg, S. Kaur, A. Sharma, A. Kumari, V. Tiwari, S. Sharma, P. Kapoor, M. Krishania, Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Frontiers in Nutrition, 9, 878221, 2022. https://doi.org/10.3389/fnut.2022.878221
  •       A. Brandolini, A. Hidalgo, S. M. Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats. Journal of Cereal Science, 63, 122–127, 2015. https://doi.org/10.1016/j.jcs.2015.03.005
  •       C. E. Tyl, M. Bunzel, Antioxidant activity-guided fractionation of blue wheat (UC66049 Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 60, 731−739, 2012. https://doi.org/10.1021/jf203648x
  •       E. S. M. Abdel-Aal, A. A. Abou-Arab, T. H. Gamel, P. J. Hucl, C. Young, I. Rabalski, Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. Journal of Agricultural and Food Chemistry, 56, 11171–11177, 2008.
  •       C. Lee, D. Han, B. Kim, N. Baek, B. K. Baik, Antioxidant and anti‐hypertensive activity of anthocyanin‐rich extracts from hulless pigmented barley cultivars. International Journal of Food Science technology, 48(5), 984-991, 2013. https://doi.org/10.1111/ijfs.12050
  •       Z. Liu, Y. Liu, Z. Pu, J. Wang, Y. Zheng, Y. Li, Y. Wei, Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnology Letters, 35, 1765-1780, 2013. https://doi.org/10.1007/s10529-013-1277-4
  •       G. Mazza, L. Gao, Blue and purple grains. In: Specialty Grains for Food and Feed (edited by E. Abdel-Aal P. Wood). Pp. 45–67 St Paul: AACC International Inc. 2005.
  •       J. M. Pihlava, J. Hellström, T. Kurtelius, P. Mattila, Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. Journal of Cereal Science, 79, 183-192, 2018. https://doi.org/10.1016/j.jcs.2017.09.009
  •       W. Dedio, R. D. Hill, L. E. Evans, Anthocyanins in the Pericarp and Coleoptiles of Purple-Seeded Rye. Canadian Journal of Plant Science, 52(6), 981–983, 1972. https://doi.org/10.4141/cjps72-168 
  •       D. H. Rhodes, L. Hoffmann, Jr, W. L. Rooney, P. Ramu, G. P. Morris, S. Kresovich, Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. Journal of Agricultural and Food Chemistry, 62(45), 10916–10927, 2014. https://doi.org/10.1021/jf503651t
  •       S. C. Choi, J. M. Kim, Y. G. Lee, C. Kim, Antioxidant activity and contents of total phenolic compounds and anthocyanins according to grain colour in several varieties of Sorghum bicolor (L.) Moench. Cereal Research Communications, 47, 228-238, 2019. https://doi.org/10.1556/0806.47.2019.14
  •       A. Khoddami, M. Mohammadrezaei, T. H. Roberts, Effects of sorghum malting on colour, major classes of phenolics and individual anthocyanins. Molecules, 22(10), 1713, 2017. https://doi.org/10.3390/molecules22101713
  •       L. Dykes, L. W. Rooney, Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105-111, 2007.
  •       L. Dykes, L. W. Rooney, R. D. Waniska, W. L. Rooney, Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry, 53(17), 6813-6818, 2005. https://doi.org/10.1021/jf050419e
  •       J. M. Awika, L. W. Rooney, R. D. Waniska, Properties of 3-deoxyanthocyanins from sorghum. Journal of Agricultural and Food Chemistry, 52(14), 4388-4394, 2004. https://doi.org/10.1021/jf049653f
  •       L. E. Pinilla, Utilization of Sorghum in El Salvador: Grain, Flour and End-Product Quality, Doctoral dissertation, Texas A & M University, 2012. 
  •       J. R. Taylor, K. G. Duodu, Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health‐enhancing properties of sorghum and millet food and beverage products. Journal of the Science of Food and Agriculture, 95(2), 225-237, 2015. https://doi.org/10.1002/jsfa.6713
  •       L. Yang, J. D. Browning, J. M. Awika, Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. Journal of Agricultural and Food Chemistry, 57(5), 1797-1804, 2009. https://doi.org/10.1021/jf8035066
  •       L. De Morais Cardoso, T. A. Montini, S. S. Pinheiro, H. M. Pinheiro-Sant’Ana, H. S. D. Martino, A. V. B. Moreira, (2014). Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum. Food Chemistry, 152, 210-217, 2014. https://doi.org/10.1016/j.foodchem.2013.11.106
  •       B. Harakotr, B. Suriharn, M. P. Scott, K. Lertrat, Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica, 203, 237–248, 2015. https://doi.org/10.1007/s10681-014-1240-z
  •       A. N. Nankar, B. Dungan, N. Paz, N. Sudasinghe, T. Schaub, F. O. Holguin, R. C. Pratt, Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. Journal of the Science of Food and Agriculture, 96(13), 4542–4552, 2016. https://doi.org/10.1002/jsfa.7671
  •       G. Pereira-Caro, S. Watanabe, A. Crozier, T. Fujimura, T. Yokota, H. Ashihara, Phytochemical profile of a Japanese black–purple rice. Food Chemistry, 141, 2821–2827, 2013. https://doi.org/10.1016/j.foodchem.2013.05.100
  •       G. Pereira-Caro, G. Cros, T. Yokota, A. Crozier, Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. Journal of Agricultural and Food Chemistry, 61, 7976−7986, 2013. https://doi.org/10.1021/jf401937b
  •       S. Sharma, P. Khare, A. Kumar, V. Chunduri, A. Kumar, P. Kapoor, P. Mangal, K. K. Kondepudi, M. Bishnoi, M. Garg, Anthocyanin‐biofortified colored wheat prevents high fat diet–induced alterations in mice: nutrigenomics studies. Molecular Nutrition Food Research, 64(13), 1900999, 2020. https://doi.org/10.1002/mnfr.201900999
  •       E. S. M. Abdel-Aal, P. Hucl, I. Rabalski, Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chemistry, 254, 13-19, 2018. https://doi.org/10.1016/j.foodchem.2018.01.170
  •       S. Žilić, D. Dodig, J. Vančetović, N. Grčić, V. Perić, P. Titan, V. Maksimović, Composition of anthocyanins in colored grains and the relationship of their non-acylated and acylated derivatives. Polish Journal of Food and Nutrition Sciences, 69(2), 137-146, 2019. https://doi.org/10.31883/pjfns-2019-105100
  •       J. Lachman, P. Martinek, Z. Kotíková, M. Orsák, M. Šulc, Genetics and chemistry of pigments in wheat grain–A review. Journal of Cereal Science, 74, 145-154, 2017. https://doi.org/10.1016/j.jcs.2017.02.007
  •       P. Bartl, A. Albreht, M. Skrt, B. Tremlová, M. Ošťádalová, K. Šmejkal, I. Vovk, N. P. Ulrih, Anthocyanins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. International Journal of Food Sciences and Nutrition, 66(5), 514-519, 2015. https://doi.org/10.3109/09637486.2015.156108
  •       D. C. Knievel, E. S. Abdel-Aal, I. Rabalski, T. Nakamura, P. Hucl, Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 50(1), 113-120, 2009. https://doi.org/10.1016/j.jcs.2009.03.007
  •       F. S. Hosseinian, W. Li, and T. Beta, Measurement of anthocyanins and other phytochemicals in purple wheat, Food Chemistry, 109.4 916-924, 2008. https://doi.org/10.1016/j.foodchem.2007.12.083
  •       I. Diczházi, L. Kursinszki, Anthocyanin Content and Composition in Winter Blue Barley Varieties and Lines. Journal of Grain Chemistry, 91(2), 195–200, 2014. https://doi.org/10.1094/cchem-05-13-0091-r
  •       H. M. Jin, B. Dang, W. G. Zhang, W. C. Zheng, X. J. Yang, Polyphenol and anthocyanin composition and activity of highland barley with different colors. Molecules, 27(11), 3411, 2022. https://doi.org/10.3390/molecules27113411
  •       L. Dykes, L. M. Seitz, W. L. Rooney, L. W. Rooney, Flavonoid composition of red sorghum genotypes. Food Chemistry, 116(1), 313–317, 2009.  https://doi.org/10.1016/j.foodchem.2009.02.052
  •       J. M. Awika, L. W Rooney, R. D. Waniska, Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry, 90(1-2), 293-301, 2005. https://doi.org/10.1016/j.foodchem.2004.03.058
  •       A. V. Rusu, C. T. Socol, S. P. Bangar, V. Coşier, M. Trif, Colored cereals: Genetics and chemistry of pigments. In Functionality and Application of Colored Cereals, Academic Press, pp. 111-134, 2023. https://doi.org/10.1016/B978-0-323-99733-1.00001-7
  •       A. Francavilla, I. J. Joye, Anthocyanins in whole grain cereals and their potential effect on health. Nutrients, 12(10), 2922, 2020.  https://doi.org/10.3390/nu12102922
  •       R. Ö. Aydın, S. Z. A. Köseoğlu, Mor Pigmentli Meyve ve Sebzelerin Kanser ile İlişkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (41), 485-491, 2022. https://doi.org/10.31590/ejosat.1114648
  •       M. A. Tikhonova, O. Y. Shoeva, M. V. Tenditnik, M. V. Ovsyukova, A. A. Akopyan, N. I. Dubrovina, T. G. Amstislavskaya, Khlestkina, E. K. Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders. Nutrients, 12(12), 3877, 2020. https://doi.org/10.3390/nu12123877
  •       N. Sharma, A. Kumari, V. Chunduri, S. Kaur, J. Banda, A. Goyal, M. Garg, Anthocyanin biofortified black, blue and purple wheat exhibited lower amino acid cooking losses than white wheat. LWT, 154, 112802, 2022. https://doi.org/10.1016/j.lwt.2021.112802
  •       M. A. Tikhonova, O. Y. Shoeva, M. V. Tenditnik, A. A. Akopyan, E. A. Litvinova, N. A. Popova, T.G. Amstislavskaya, E. K. Khlestkina, Antitumor Effects of an Anthocyanin-Rich Grain Diet in a Mouse Model of Lewis Lung Carcinoma. International Journal of Molecular Sciences, 25(11), 5727, 2024. https://doi.org/10.3390/ijms25115727
  •       F. Zhu, Interactions between starch and phenolic compound. Trends in Food Science and Technology, 43(2), 129–143, 2015. https://doi.org/10.1016/j.tifs.2015.02.003
  •       F. Zhu Interactions between cell wall polysaccharides and polyphenols. Critical reviews in Food Science and Nutrition, 58(11), 1808–1831, 2018b. https://doi.org/10.1080/10408398.2017.1287659
  •     M. Hidalgo, M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, et al. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60, 3882–3890, 2012. https://doi.org/10.1021/jf3002153
  •     J. Prokop, P. Anzenbacher, E. Mrkvicová, L. Pavlata, I. Zapletalová, O. Šťastník, P. Martinek, P. Kosina, E. Anzenbacherová, In vivo evaluation of effect of anthocyanin-rich wheat on rat liver microsomal drug-metabolizing cytochromes P450 and on biochemical and antioxidant parameters in rats. Food and Chemical Toxicology, 122, 225-233, 2018. https://doi.org/10.1016/j.fct.2018.10.029
  •     E. Mrkvicová, L. Pavlata, F. Karásek, O. Šťastník, E. Doležalová, V. Trojan, T. Vyhnánek, L.Hřivna, V. Holeksová, J. Mareš, T. Brabec, P. Horký, B. Ruttkay-Nedecký, V. Adam, R. Kizek, The influence of feeding purple wheat with higher content of anthocyanins on antioxidant status and selected enzyme activity of animals. ActaVeterinaria Brno, 85(4), 371-376, 2017. https://doi.org/10.2754/avb201685040371
  •     Y. Liu, J. Qiu, Y. Yue, K. Li, G. Ren, Dietary black-grained wheat intake improves glycemic control and inflammatory profile in patients with type 2 diabetes: A randomized controlled trial. Therapeutics And Clinical Risk Management, 247-256, 2018. https://doi.org/10.2147/TCRM.S151424
  •     T. H. Gamel, A. J. Wright, A. J. Tucker, M. Pickard, I. Rabalski, M. Podgorski,... E. S. M. Abdel-Aal, Absorption and metabolites of anthocyanins and phenolic acids after consumption of purple wheat crackers and bars by healthy adults. Journal of Cereal Science, 86, 60-68, 2019. https://doi.org/10.1016/j.jcs.2018.11.017
  •     K. Petroni, R. Pilu, C. Tonelli, Anthocyanins in corn: a wealth of genes for human health. Planta, 240(5), 901–911, 2014. https://doi.org/10.1007/s00425-014-2131-1
  •     P. Suganyadevi, K. M. Saravanakumar, S. Mohandas, The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sciences, 92, 379–382, 2013. https://doi.org/10.1016/j.lfs.2013.01.006
  •     D. A. Urias-Lugo, J. B. Heredia, M. D. Muy-Rangel, J. B. Valdez-Torres, S. O. Serna-Saldívar, J. A. Gutiérrez-Uribe, Anthocyanins and phenolic acids of hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer cells. Plant Foods for Human Nutrition, 70, 193–199, 2015. https://doi.org/10.1007/s11130-015-0479-4
  •     S. Thummayot, C. Tocharus, D. Pinkaew, K. Viwatpinyo, K. Sringarm, J. Tocharus, Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. NeuroToxicology, 45, 149–158, 2014. https://doi.org/10.1016/j.neuro.2014.10.010
  •     M. Y. Um, J. Ahn, T. Y. Ha, Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities. Journal of the Science of Food and Agriculture, 93, 3126–3128, 2013. https://doi.org/10.1002/jsfa.6070
  •     Y. Yang, M. C. Andrews, Y. Hu, D. Wang, Y. Qin, et al. Anthocyanin extract from black rice significantly ameliorates platelet hyperactivity and hypertriglycer- idemia in dyslipidemic rats induced by high fat diets. Journal of Agricultural and Food Chemistry, 59, 6759–6764, 2011. https://doi.org/10.1021/jf201079h
  •     X. Lu, Y. Zhou, T. Wu, L. Hao, Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Function, 5, 2892–2897, 2014.
  •     X. Jiang, H. Guo, T. Shen, X. Tang, Y. Yang, W. Ling, Cyanidin-3-O-β-glu-coside purified from black rice protects mice against hepatic fibrosis induced by carbon tetrachloride via inhibiting hepatic stellate cell activation. Journal of Agricultural and Food Chemistry, 63, 6221–6230, 2015. https://doi.org/10.1021/acs.jafc.5b02181
  •     Y. Shen, H. Zhang, L. Cheng, L. Wang, H. Qian, X. Qi, In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chemistry, 194, 1003–1012, 2016. https://doi.org/10.1016/j.foodchem.2015.08.083

Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1524316

Öz

Antosiyaninler, polifenolik bileşikler olup, flavonoid pigmentlerin en önemli grubudur. Tarımsal ürünlerde yaygın olarak bulunurlar. Antosiyaninler, tüm gelişmiş bitkilerin çiçekleri, meyveleri, yaprakları, gövdeleri ve köklerinde oluşmaktadır. Antosiyaninlerin renkleri gıdanın asitliğine de bağlı olarak değişiklik göstermektedir. Çoğu antosiyanin asidik şartlarda kırmızı ve düşük asitli şartlarda ise mavi renge dönüşmektedir. Gıdalarda serbest halde bulunmazlar. Bazı organik bileşenler ile bağlı olarak bulunurlar. Antosiyaninlerin iltihap giderici, damar koruyucu, normal damar geçirgenliğini koruyucu, trombosit kümeleşmesini önleyici, tümör gelişimini önleyici, antiülser, diyabet kontrolü ve UV radyasyona karşı koruyucu etkileri gibi birçok faydalı yönünün olduğu bilinmektedir. Yapılan in vivo ve in vitro çalışmalar bu faydaları doğrulayıcı niteliktedir. Araştırma sonuçları incelendiğinde tahıllarda renk yoğunluğu arttıkça antosiyanin oranlarının yükseldiği gözlemlenmiştir. Tahıllarda çeşit farklılığına göre, siyanidin, pelargonidin, peonidin, delfinidin ve malvidin grubu antosiyaninler farklı oranlarda tespit edilmişlerdir. Bu çalışmada tahıllarda teknolojik uygulamalarda sınırlı kullanım alanı olan fakat insan sağlığı açısından önemli bir yeri olan antosiyaninlerin tahıllarda bulunma durumu ve ayrıca bunların insan sağlığı üzerine etkileri derlenmiştir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm. Yavuz YÜKSEL

Kaynakça

  • J. Harbone, A. C. Williams, Anthocyanins and other flavonoides. 15, pp. 631, 1998.
  •         K. E. Schwinn, K. M. Davies, Flavonoids, in plant pigments and their manipulation. Annual Plant Reviews. Blackwell Publishing, 92, 149, 2004.
  •         İ. Koca, B. Karadeniz, S. Tural, Antosiyaninlerin antioksidan aktivitesi. Türkiye, 9, 24-26, 2006.
  •         M. Rein, Copigmentation reactions and color stability of berry anthocyanins, Doctoral dissertation, Helsingin yliopiston, University of Helsinki, 2005.
  •         M. Paulsmeyer, L. Chatham, T. Becker, M. West, L. West, J. Juvik, Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasms. Journal of Agricultural and Food Chemistry, 65(21), 4341–4350, 2017. https://doi.org/10.1021/acs.jafc.7b00771
  •         M. T. Escribano-Bailón, C. Santos-Buelga, J. C. Rivas-Gonzalo, Anthocyanins in cereals. Journal of Chromatography A, 1054(1-2), 129–141, 2004. https://doi.org/10.1016/j.chroma.2004.08.152
  •         D. B. Ficco, V. De Simone, A. M. De Leonardis, V. Giovanniello, M. A. Del Nobile, L. Padalino, L. Lecce, G. M. Borrelli, P. De Vita, Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chemistry, 205, 187–195, 2016. https://doi.org/10.1016/j.foodchem.2016.03.014
  •         M. J. Kim, J. N. Hyun, J. A. Kim, J. C. Park, M. Y. Kim, J. G. Kim, S. J. Lee, S. C. Chun, I. M. Chung, Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 55(12), 4802–4809, 2007. https://doi.org/10.1021/jf0701943
  •         S. L. Dwivedi, A. K. Mattoo, M. Garg, S. Dutt, B. Singh, R. Ortiz, Developing germplasm and promoting consumption of anthocyanin-rich grains for health benefits. Frontiers in Sustainable Food Systems, 6, 867897, 2022. https://doi.org/10.3389/fsufs.2022.867897
  •       M. Garg, NABIMG-11-Black (BW/2* PBW621) (IC0620916; INGR17003), a wheat (Triticum aestivum) germplasm with black grain color (purple pericarp + blue aleurone). Indian Journal of Plant Genetic Resources, 31, 334–335, 2018.
  •       M. Garg, NABIMG-10-Purple (BW/2* PBW621) (IC0620915; INGR17002), a wheat (Triticum aestivum) germplasm with purple grain (pericarp) color. Indian Journal of Plant Genetic Resources, 333–334, 2018.
  •       M. Garg, NABIMG-9-Blue; BW/2*/PBW621 (IC0620914; INGR17001), a wheat (Triticum aestivum) germplasm with blue grain (aleurone) colour. Indian Journal of Plant Genetic Resources, 332–333, 2018.
  •       F. Zhu, Anthocyanins in cereals: Composition and health effects. Food Research International (Ottawa, Ont.), 109, 232–249, 2018. https://doi.org/10.1016/j.foodres.2018.04.015
  •       P. A. Zykin, E. A. Andreeva, A. N. Lykholay, N. V. Tsvetkova, A. V. Voylokov, Anthocyanin Composition and Content in Rye Plants with Different Grain Color. Molecules (Basel, Switzerland), 23(4), 948, 2018. https://doi.org/10.3390/molecules23040948
  •       M. Paulsmeyer, J. Juvik, Functional characterization of an anthocyanin dimalonyltransferase in maize. Molecules, 26(7), 2020, (2021). https://doi.org/10.3390/molecules26072020
  •       S. Krüger, G. E. Morlock, Fingerprinting and characterization of anthocyanins in 94 colored wheat varieties and blue aleurone and purple pericarp wheat crosses. Journal of Chromatography A, 1538, 75-85, 2018. https://doi.org/10.1016/j.chroma.2018.01.032
  •       K. V. Strygina, A. Börner, E. K. Khlestkina, Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biology, 17(1), 1-9, 2017. https://doi.org/10.1186/s12870-017-1122-3
  •       X. Wu, R. L. Prior, Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization− tandem mass spectrometry in common foods in the United States: Vegetables, nuts, and grains. Journal of Agricultural and Food Chemistry, 53(8), 3101-3113, 2005. https://doi.org/10.1021/jf0478861
  •       T. T. Efremova, S. V. Morozov, E. I. Chernyak, E. V. Chumanova, Combining the genes of blue aleurone and purple pericarp in the genotype of spring bread wheat Saratovskaya 29 to increase anthocyanins in grain. Journal of Cereal Science, 109, 103616, 2023. https://doi.org/10.1016/j.jcs.2022.103616
  •       M. P. Barbosa, R. de Araújo Miguel, R. R. P. da Conceição, C. N. Kobori, V. A. V. Queiroz, Optimization of extraction, characterization, and stability of the natural pigment from sorghum genotype SC 319. Brazilian Journal of Development, 9(3), 10783-10798, 2023. https://doi.org/10.34117/bjdv9n3-126
  •       S. Suriano, M. Savino, P. Codianni, A. Iannucci, G. Caternolo, M. Russo, N. Pecchioni, A. Troccoli, Anthocyanin profile and antioxidant capacity in coloured barley. International Journal of Food Science Technology, 54(7), 2478-2486, 2019. https://doi.org/10.1111/ijfs.14203
  •       O. Y. Tereshchenko, T. A. Pshenichnikova, E. A. Salina, E. K. Khlestkina, Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal research communications, 40, 210-214, 2012. https://doi.org/10.1556/CRC.40.2012.2.5
  •       V. Taleon, L. Dykes, W. L. Rooney, L. W. Rooney, Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal of Cereal Science, 56(2), 470-475, 2012. https://doi.org/10.1016/j.jcs.2012.05.001
  •       Q. Zhu, S. Yu, D. Zeng, H. Liu, H. Wang, Z. Yang, X. Xie, R. Shen, J. Tan, H. Li, X. Zhao, Q. Zhang, Y. Chen, J. Guo, L. Chen, Y. G. Liu, Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. Molecular plant, 10(7), 918–929, 2017.https://doi.org/10.1016/j.molp.2017.05.008
  •       H. Wang, D. Liu, Y. Ji, Y. Liu, L. Xu, Y. Guo, Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high‐fat and cholesterol diet. Molecular Nutrition Food Research, 64(8), 1900876, 2020. https://doi.org/10.1002/mnfr.201900876
  •       S. Sharma, P. Khare, A. Kumar, V. Chunduri, A. Kumar, P. Kapoor,  P. Mangal, K. K. Kondepudi,  M. Bishnoi, M. Garg, Anthocyanin‐biofortified colored wheat prevents high-fat diet-induced alterations in mice: nutrigenomics studies. Molecular Nutrition Food Research, 64(13), 1900999, 2020. https://doi.org/10.1002/mnfr.20190999
  •       S. Fabroni, G. Ballistreri, M. Amenta, F.V. Romeo, P. Rapisarda, Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes, and cereals. Journal of the Science of Food and Agriculture, 96, 4713–4723, 2016.  https://doi.org/10.1002/jsfa.7708
  •       Y.F. Chen, M.A. Shibu, M.J. Fan, M.C. Chen, V.P. Viswanadha, Y.L. Lin, C.H. Lai, K.H. Lin, T.J. Ho, W.W. Kuo, C.H. Huang, Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J. Nutr. Biochem., 31, 98–105, 2016. https://doi.org/10.1016/j.jnutbio.2015.12.020
  •       W. Chen, D. Müller, E. Richling, M. Wink, Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. Journal of Agricultural and Food Chemistry, 61(12), 3047–3053, 2013. https://doi.org/10.1021/jf3054643
  •       Y. Zuo, C. Peng, Y. Liang, K. Y. Ma, H. Yu, H.Y.E. Chan, Z. Y. Chen, Black rice extract extends the lifespan of fruit flies. Food Function, 3(12), 1271–1279, 2012. https://doi.org/10.1039/c2fo30135k
  •       G. H. Yıldırım, F. Öner, Mısır danesinin fiziksel ve besinsel yapısı. Harman Dergisi, 92, 68-74, 2020.
  •       F. Lao, M. M. Giusti, Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: Method comparison and correlation. Food Analytical Methods, 9, 1367–1380, 2016. https://doi.org/10.1007/s12161-015-0318-0
  •       A. Collison, L. Yang, L. Dykes, S. Murray, J. M. Awika, Influence of Genetic Background on Anthocyanin and Copigment Composition and Behavior during Thermoalkaline Processing of Maize. Journal of Agricultural and Food Chemistry, 63(22), 5528–5538, 2015. https://doi.org/10.1021/acs.jafc.5b00798
  •       B. Harakotr, B. Suriharn, R. Tangwongchai, M. P. Scott, K. Lertrat, Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking." Food Chemistry, 164,510-517, 2014. https://doi.org/10.1016/j.foodchem.2014.05.069
  •       G. A. Camelo-Méndez, E. Agama-Acevedo, M. M. Sanchez-Rivera, L. A. Bello-Pérez, Effect on in vitro starch digestibility of Mexican blue maize anthocyanins. Food Chemistry, 211, 281-284, 2016. https://doi.org/10.1016/j.foodchem.2016.05.024
  •       S. Zilić, A. Serpen, G. Akıllıoğlu, V. Gökmen, J. Vančetović, Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224–1231, 2012. https://doi.org/10.1021/jf204367z
  •       M. P. Georgiana, S. Muste, O. Ranta, A. Molnar, A. D. Păcurar, Anthocyanins in maize (Zea mays): composition and health effects-A Review. Hop Med Plants, 27(1-2), 50-56, 2019.
  •       E. Mackon, G. C. J. D. E. Mackon, Y. Ma, M. H. Kashif, N., Ali, B. Usman, P. Liu, Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis. Biomolecules, 11(3), 394, 2021 https://doi.org/10.3390/biom11030394
  •       S. Jiamyangyuen, N. Nuengchamnong, P. Ngamdee, Bioactivity and chemical components of Thai rice in five stages of grain development. Journal of Cereal Science, 74, 136-144, 2017. https://doi.org/10.1016/j.jcs.2017.01.021
  •       M. H. Chen, A. M. McClung, C. J. Bergman, Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors. Journal of Cereal Science, 77, 110-119, 2017. https://doi.org/10.1016/j.jcs.2017.07.010
  •       J. Hao, H. Zhu, Z. Zhang, S. Yang, H. Li, Identification of anthocyanins in black rice (Oryza sativa L.) by UPLC/Q-TOF-MS and their in vitro and in vivo antioxidant activities. Journal of Cereal Science, 64, 92–99,2015.  https://doi.org/10.1016/j.jcs.2015.05.003 
  •       M. Zaupa, L. Calani, D. Del Rio, F. Brighenti, N. Pellegrini, Characterization of total antioxidant capacity and (poly) phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chemistry, 187, 338-347, 2015. https://doi.org/10.1016/j.foodchem.2015.04.055
  •       Y. Shao, F. Xu, X. Sun, J. Bao, T. Beta, Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59(2), 211–218, 2014.  https://doi.org/10.1016/j.jcs.2014.01.004
  •       M. Bordiga, S. Gomez-Alonso, M. Locatelli, F Travaglia, J. D. Coïsson, I. Hermosin-Gutierrez, M. Arlorio, Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Research International, 65, 282-290, 2014. https://doi.org/10.1016/j.foodres.2014.03.007
  •       Z. Hou, P. Qin, Y. Zhang, S. Cui, G. Ren, Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691-697, 2013. https://doi.org/10.1016/j.foodres.2011.07.037
  •       X. Q. Chen, N. Nagao, T. Itani, K. Irifune, Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chemistry, 135(4), 2783-2788, 2012. https://doi.org/10.1016/j.foodchem.2012.06.098
  •       T. Frank, B. Reichardt, Q. Shu, K. H. Engel, Metabolite profiling of colored rice (Oryza sativa L.) grains. Journal of Cereal Science, 55(2), 112-119, 2012. https://doi.org/10.1016/j.jcs.2011.09.009
  •       M. Hiemori, E. Koh, A. E. Mitchell, Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). Journal of Agricultural and Food Chemistry, 57(5), 1908-1914, 2009. https://doi.org/10.1021/jf803153z
  •       E. S. M. Abdel-Aal, J. C. Young, I. Rabalski, Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54(13), 4696-4704, 2006. https://doi.org/10.1021/jf0606609
  •       P. Goufo, H. Trindade, Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ‐oryzanol, and phytic acid. Food Science Nutrition, 2(2), 75-104, 2014. https://doi.org/10.1002/fsn3.86
  •       M. Garg, M. Chawla, V. Chunduri, R. Kumar, S. Sharma, N. K. Sharma, N. Kaur, A. Kumar, J. K. Mundey, M. K. Saini, S. P. Singh, Tane renklerinin elit buğday çeşitlerine aktarılması ve karakterizasyonu. Journal of Cereal Science, 71:138–44, 2016. https://doi.org/10.1016/j.jcs.2016.08.004
  •       D. B. Ficco, V. De Simone, S. A. Colecchia, I. Pecorella, C. Platani, F. Nigro, F. Finocchiaro, R. Papa P. De Vita, Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. Journal ofagricultural and food chemistry, 62(34), 8686-8695, 2014. https://doi.org/10.1021/jf5003683
  •       A. C. Zeven, Wheats with purple and blue grains: A Review. Euphytica, 56, 243-258, 1991.
  •       V. Burešová, D. Kopecký, J. Bartoš, P. Martinek, N. Watanabe, T. Vyhnánek, J. Doležel, Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 128, 273-282, 2015.
  •       L. A. Morrison, R. J. Metzger, A. J. Lukaszewski, Origin of the blue‐aleurone gene in Sebesta Blue wheat genetic stocks and a protocol for its use in apomixis screening. Crop Science, 44(6), 2063-2067, 2004. https://doi.org/10.2135/cropsci2004.2063
  •       T. N., Er, N. Y. Ayhan, Bazı yerel buğday türlerinin ve kefirin ekmek yapımında kullanımı. Toros University Journal of Food Nutrition and Gastronomy, 2(1), 43-51, 2023.
  •       S. Kaur, N. Sharma, P. Kapoor, V. Chunduri, AK. Pandey, M. Garg, Spotlight on the overlapping routes and partners for anthocyanin transport in plants. Physiologia Plantarum 2021, 171(4): 868-881 https://doi.org/10.1111/ppl.13378
  •       M. Garg, S. Kaur, A. Sharma, A. Kumari, V. Tiwari, S. Sharma, P. Kapoor, M. Krishania, Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Frontiers in Nutrition, 9, 878221, 2022. https://doi.org/10.3389/fnut.2022.878221
  •       A. Brandolini, A. Hidalgo, S. M. Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats. Journal of Cereal Science, 63, 122–127, 2015. https://doi.org/10.1016/j.jcs.2015.03.005
  •       C. E. Tyl, M. Bunzel, Antioxidant activity-guided fractionation of blue wheat (UC66049 Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 60, 731−739, 2012. https://doi.org/10.1021/jf203648x
  •       E. S. M. Abdel-Aal, A. A. Abou-Arab, T. H. Gamel, P. J. Hucl, C. Young, I. Rabalski, Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. Journal of Agricultural and Food Chemistry, 56, 11171–11177, 2008.
  •       C. Lee, D. Han, B. Kim, N. Baek, B. K. Baik, Antioxidant and anti‐hypertensive activity of anthocyanin‐rich extracts from hulless pigmented barley cultivars. International Journal of Food Science technology, 48(5), 984-991, 2013. https://doi.org/10.1111/ijfs.12050
  •       Z. Liu, Y. Liu, Z. Pu, J. Wang, Y. Zheng, Y. Li, Y. Wei, Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnology Letters, 35, 1765-1780, 2013. https://doi.org/10.1007/s10529-013-1277-4
  •       G. Mazza, L. Gao, Blue and purple grains. In: Specialty Grains for Food and Feed (edited by E. Abdel-Aal P. Wood). Pp. 45–67 St Paul: AACC International Inc. 2005.
  •       J. M. Pihlava, J. Hellström, T. Kurtelius, P. Mattila, Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. Journal of Cereal Science, 79, 183-192, 2018. https://doi.org/10.1016/j.jcs.2017.09.009
  •       W. Dedio, R. D. Hill, L. E. Evans, Anthocyanins in the Pericarp and Coleoptiles of Purple-Seeded Rye. Canadian Journal of Plant Science, 52(6), 981–983, 1972. https://doi.org/10.4141/cjps72-168 
  •       D. H. Rhodes, L. Hoffmann, Jr, W. L. Rooney, P. Ramu, G. P. Morris, S. Kresovich, Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. Journal of Agricultural and Food Chemistry, 62(45), 10916–10927, 2014. https://doi.org/10.1021/jf503651t
  •       S. C. Choi, J. M. Kim, Y. G. Lee, C. Kim, Antioxidant activity and contents of total phenolic compounds and anthocyanins according to grain colour in several varieties of Sorghum bicolor (L.) Moench. Cereal Research Communications, 47, 228-238, 2019. https://doi.org/10.1556/0806.47.2019.14
  •       A. Khoddami, M. Mohammadrezaei, T. H. Roberts, Effects of sorghum malting on colour, major classes of phenolics and individual anthocyanins. Molecules, 22(10), 1713, 2017. https://doi.org/10.3390/molecules22101713
  •       L. Dykes, L. W. Rooney, Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105-111, 2007.
  •       L. Dykes, L. W. Rooney, R. D. Waniska, W. L. Rooney, Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry, 53(17), 6813-6818, 2005. https://doi.org/10.1021/jf050419e
  •       J. M. Awika, L. W. Rooney, R. D. Waniska, Properties of 3-deoxyanthocyanins from sorghum. Journal of Agricultural and Food Chemistry, 52(14), 4388-4394, 2004. https://doi.org/10.1021/jf049653f
  •       L. E. Pinilla, Utilization of Sorghum in El Salvador: Grain, Flour and End-Product Quality, Doctoral dissertation, Texas A & M University, 2012. 
  •       J. R. Taylor, K. G. Duodu, Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health‐enhancing properties of sorghum and millet food and beverage products. Journal of the Science of Food and Agriculture, 95(2), 225-237, 2015. https://doi.org/10.1002/jsfa.6713
  •       L. Yang, J. D. Browning, J. M. Awika, Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. Journal of Agricultural and Food Chemistry, 57(5), 1797-1804, 2009. https://doi.org/10.1021/jf8035066
  •       L. De Morais Cardoso, T. A. Montini, S. S. Pinheiro, H. M. Pinheiro-Sant’Ana, H. S. D. Martino, A. V. B. Moreira, (2014). Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum. Food Chemistry, 152, 210-217, 2014. https://doi.org/10.1016/j.foodchem.2013.11.106
  •       B. Harakotr, B. Suriharn, M. P. Scott, K. Lertrat, Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica, 203, 237–248, 2015. https://doi.org/10.1007/s10681-014-1240-z
  •       A. N. Nankar, B. Dungan, N. Paz, N. Sudasinghe, T. Schaub, F. O. Holguin, R. C. Pratt, Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. Journal of the Science of Food and Agriculture, 96(13), 4542–4552, 2016. https://doi.org/10.1002/jsfa.7671
  •       G. Pereira-Caro, S. Watanabe, A. Crozier, T. Fujimura, T. Yokota, H. Ashihara, Phytochemical profile of a Japanese black–purple rice. Food Chemistry, 141, 2821–2827, 2013. https://doi.org/10.1016/j.foodchem.2013.05.100
  •       G. Pereira-Caro, G. Cros, T. Yokota, A. Crozier, Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. Journal of Agricultural and Food Chemistry, 61, 7976−7986, 2013. https://doi.org/10.1021/jf401937b
  •       S. Sharma, P. Khare, A. Kumar, V. Chunduri, A. Kumar, P. Kapoor, P. Mangal, K. K. Kondepudi, M. Bishnoi, M. Garg, Anthocyanin‐biofortified colored wheat prevents high fat diet–induced alterations in mice: nutrigenomics studies. Molecular Nutrition Food Research, 64(13), 1900999, 2020. https://doi.org/10.1002/mnfr.201900999
  •       E. S. M. Abdel-Aal, P. Hucl, I. Rabalski, Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chemistry, 254, 13-19, 2018. https://doi.org/10.1016/j.foodchem.2018.01.170
  •       S. Žilić, D. Dodig, J. Vančetović, N. Grčić, V. Perić, P. Titan, V. Maksimović, Composition of anthocyanins in colored grains and the relationship of their non-acylated and acylated derivatives. Polish Journal of Food and Nutrition Sciences, 69(2), 137-146, 2019. https://doi.org/10.31883/pjfns-2019-105100
  •       J. Lachman, P. Martinek, Z. Kotíková, M. Orsák, M. Šulc, Genetics and chemistry of pigments in wheat grain–A review. Journal of Cereal Science, 74, 145-154, 2017. https://doi.org/10.1016/j.jcs.2017.02.007
  •       P. Bartl, A. Albreht, M. Skrt, B. Tremlová, M. Ošťádalová, K. Šmejkal, I. Vovk, N. P. Ulrih, Anthocyanins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. International Journal of Food Sciences and Nutrition, 66(5), 514-519, 2015. https://doi.org/10.3109/09637486.2015.156108
  •       D. C. Knievel, E. S. Abdel-Aal, I. Rabalski, T. Nakamura, P. Hucl, Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 50(1), 113-120, 2009. https://doi.org/10.1016/j.jcs.2009.03.007
  •       F. S. Hosseinian, W. Li, and T. Beta, Measurement of anthocyanins and other phytochemicals in purple wheat, Food Chemistry, 109.4 916-924, 2008. https://doi.org/10.1016/j.foodchem.2007.12.083
  •       I. Diczházi, L. Kursinszki, Anthocyanin Content and Composition in Winter Blue Barley Varieties and Lines. Journal of Grain Chemistry, 91(2), 195–200, 2014. https://doi.org/10.1094/cchem-05-13-0091-r
  •       H. M. Jin, B. Dang, W. G. Zhang, W. C. Zheng, X. J. Yang, Polyphenol and anthocyanin composition and activity of highland barley with different colors. Molecules, 27(11), 3411, 2022. https://doi.org/10.3390/molecules27113411
  •       L. Dykes, L. M. Seitz, W. L. Rooney, L. W. Rooney, Flavonoid composition of red sorghum genotypes. Food Chemistry, 116(1), 313–317, 2009.  https://doi.org/10.1016/j.foodchem.2009.02.052
  •       J. M. Awika, L. W Rooney, R. D. Waniska, Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry, 90(1-2), 293-301, 2005. https://doi.org/10.1016/j.foodchem.2004.03.058
  •       A. V. Rusu, C. T. Socol, S. P. Bangar, V. Coşier, M. Trif, Colored cereals: Genetics and chemistry of pigments. In Functionality and Application of Colored Cereals, Academic Press, pp. 111-134, 2023. https://doi.org/10.1016/B978-0-323-99733-1.00001-7
  •       A. Francavilla, I. J. Joye, Anthocyanins in whole grain cereals and their potential effect on health. Nutrients, 12(10), 2922, 2020.  https://doi.org/10.3390/nu12102922
  •       R. Ö. Aydın, S. Z. A. Köseoğlu, Mor Pigmentli Meyve ve Sebzelerin Kanser ile İlişkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (41), 485-491, 2022. https://doi.org/10.31590/ejosat.1114648
  •       M. A. Tikhonova, O. Y. Shoeva, M. V. Tenditnik, M. V. Ovsyukova, A. A. Akopyan, N. I. Dubrovina, T. G. Amstislavskaya, Khlestkina, E. K. Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders. Nutrients, 12(12), 3877, 2020. https://doi.org/10.3390/nu12123877
  •       N. Sharma, A. Kumari, V. Chunduri, S. Kaur, J. Banda, A. Goyal, M. Garg, Anthocyanin biofortified black, blue and purple wheat exhibited lower amino acid cooking losses than white wheat. LWT, 154, 112802, 2022. https://doi.org/10.1016/j.lwt.2021.112802
  •       M. A. Tikhonova, O. Y. Shoeva, M. V. Tenditnik, A. A. Akopyan, E. A. Litvinova, N. A. Popova, T.G. Amstislavskaya, E. K. Khlestkina, Antitumor Effects of an Anthocyanin-Rich Grain Diet in a Mouse Model of Lewis Lung Carcinoma. International Journal of Molecular Sciences, 25(11), 5727, 2024. https://doi.org/10.3390/ijms25115727
  •       F. Zhu, Interactions between starch and phenolic compound. Trends in Food Science and Technology, 43(2), 129–143, 2015. https://doi.org/10.1016/j.tifs.2015.02.003
  •       F. Zhu Interactions between cell wall polysaccharides and polyphenols. Critical reviews in Food Science and Nutrition, 58(11), 1808–1831, 2018b. https://doi.org/10.1080/10408398.2017.1287659
  •     M. Hidalgo, M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, et al. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60, 3882–3890, 2012. https://doi.org/10.1021/jf3002153
  •     J. Prokop, P. Anzenbacher, E. Mrkvicová, L. Pavlata, I. Zapletalová, O. Šťastník, P. Martinek, P. Kosina, E. Anzenbacherová, In vivo evaluation of effect of anthocyanin-rich wheat on rat liver microsomal drug-metabolizing cytochromes P450 and on biochemical and antioxidant parameters in rats. Food and Chemical Toxicology, 122, 225-233, 2018. https://doi.org/10.1016/j.fct.2018.10.029
  •     E. Mrkvicová, L. Pavlata, F. Karásek, O. Šťastník, E. Doležalová, V. Trojan, T. Vyhnánek, L.Hřivna, V. Holeksová, J. Mareš, T. Brabec, P. Horký, B. Ruttkay-Nedecký, V. Adam, R. Kizek, The influence of feeding purple wheat with higher content of anthocyanins on antioxidant status and selected enzyme activity of animals. ActaVeterinaria Brno, 85(4), 371-376, 2017. https://doi.org/10.2754/avb201685040371
  •     Y. Liu, J. Qiu, Y. Yue, K. Li, G. Ren, Dietary black-grained wheat intake improves glycemic control and inflammatory profile in patients with type 2 diabetes: A randomized controlled trial. Therapeutics And Clinical Risk Management, 247-256, 2018. https://doi.org/10.2147/TCRM.S151424
  •     T. H. Gamel, A. J. Wright, A. J. Tucker, M. Pickard, I. Rabalski, M. Podgorski,... E. S. M. Abdel-Aal, Absorption and metabolites of anthocyanins and phenolic acids after consumption of purple wheat crackers and bars by healthy adults. Journal of Cereal Science, 86, 60-68, 2019. https://doi.org/10.1016/j.jcs.2018.11.017
  •     K. Petroni, R. Pilu, C. Tonelli, Anthocyanins in corn: a wealth of genes for human health. Planta, 240(5), 901–911, 2014. https://doi.org/10.1007/s00425-014-2131-1
  •     P. Suganyadevi, K. M. Saravanakumar, S. Mohandas, The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sciences, 92, 379–382, 2013. https://doi.org/10.1016/j.lfs.2013.01.006
  •     D. A. Urias-Lugo, J. B. Heredia, M. D. Muy-Rangel, J. B. Valdez-Torres, S. O. Serna-Saldívar, J. A. Gutiérrez-Uribe, Anthocyanins and phenolic acids of hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer cells. Plant Foods for Human Nutrition, 70, 193–199, 2015. https://doi.org/10.1007/s11130-015-0479-4
  •     S. Thummayot, C. Tocharus, D. Pinkaew, K. Viwatpinyo, K. Sringarm, J. Tocharus, Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. NeuroToxicology, 45, 149–158, 2014. https://doi.org/10.1016/j.neuro.2014.10.010
  •     M. Y. Um, J. Ahn, T. Y. Ha, Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities. Journal of the Science of Food and Agriculture, 93, 3126–3128, 2013. https://doi.org/10.1002/jsfa.6070
  •     Y. Yang, M. C. Andrews, Y. Hu, D. Wang, Y. Qin, et al. Anthocyanin extract from black rice significantly ameliorates platelet hyperactivity and hypertriglycer- idemia in dyslipidemic rats induced by high fat diets. Journal of Agricultural and Food Chemistry, 59, 6759–6764, 2011. https://doi.org/10.1021/jf201079h
  •     X. Lu, Y. Zhou, T. Wu, L. Hao, Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Function, 5, 2892–2897, 2014.
  •     X. Jiang, H. Guo, T. Shen, X. Tang, Y. Yang, W. Ling, Cyanidin-3-O-β-glu-coside purified from black rice protects mice against hepatic fibrosis induced by carbon tetrachloride via inhibiting hepatic stellate cell activation. Journal of Agricultural and Food Chemistry, 63, 6221–6230, 2015. https://doi.org/10.1021/acs.jafc.5b02181
  •     Y. Shen, H. Zhang, L. Cheng, L. Wang, H. Qian, X. Qi, In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chemistry, 194, 1003–1012, 2016. https://doi.org/10.1016/j.foodchem.2015.08.083
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Yavuz Yüksel 0000-0001-7960-578X

Erken Görünüm Tarihi 20 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 1 Ağustos 2024
Kabul Tarihi 22 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Yüksel, Y. (2024). Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1524316
AMA Yüksel Y. Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri. NÖHÜ Müh. Bilim. Derg. Aralık 2024;14(1):1-1. doi:10.28948/ngumuh.1524316
Chicago Yüksel, Yavuz. “Tahıllarda Bulanan Antosiyaninler Ve sağlık üzerine Etkileri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Aralık 2024): 1-1. https://doi.org/10.28948/ngumuh.1524316.
EndNote Yüksel Y (01 Aralık 2024) Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE Y. Yüksel, “Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 1–1, 2024, doi: 10.28948/ngumuh.1524316.
ISNAD Yüksel, Yavuz. “Tahıllarda Bulanan Antosiyaninler Ve sağlık üzerine Etkileri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Aralık 2024), 1-1. https://doi.org/10.28948/ngumuh.1524316.
JAMA Yüksel Y. Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri. NÖHÜ Müh. Bilim. Derg. 2024;14:1–1.
MLA Yüksel, Yavuz. “Tahıllarda Bulanan Antosiyaninler Ve sağlık üzerine Etkileri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2024, ss. 1-1, doi:10.28948/ngumuh.1524316.
Vancouver Yüksel Y. Tahıllarda bulanan antosiyaninler ve sağlık üzerine etkileri. NÖHÜ Müh. Bilim. Derg. 2024;14(1):1-.

download