Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALYSING THE SECTORS IN TERMS OF QUALITY MANAGEMENT: AHP, TOPSIS AND EDAS APPROACH

Yıl 2025, Cilt: 6 Sayı: 1, 1 - 21, 30.06.2025
https://doi.org/10.59113/niibfd.1700746

Öz

Total Quality Management (TQM) has become a critical managerial approach for businesses seeking to gain a competitive advantage in increasingly dynamic and globalized markets. In environments characterized by intense competition, enhancing job performance and employee satisfaction is essential for organizational sustainability. As such, TQM serves as a strategic framework aimed at embedding quality into every aspect of organizational operations. This study aims to evaluate the quality management performance of six major economic sectors in Türkiye for the year 2022, based on data published in 2023 by the Turkish Statistical Institute (TurkStat). The evaluation is conducted using an integrated Multi-Criteria Decision-Making (MCDM) approach that employs the Analytic Hierarchy Process (AHP) to weight the criteria and utilizes the TOPSIS and EDAS methods for sectoral performance ranking.
The criteria selected for the analysis include production value, number of employees, productivity (calculated as production value per employee), turnover, and number of enterprises. According to the AHP results, production value (0.5208) and number of employees (0.2495) emerged as the most influential criteria in determining quality performance. The consistency of the AHP decision matrix was validated with a consistency ratio (CR) of 0.0993, ensuring the methodological reliability of the weighting process.
The sectoral rankings obtained from both TOPSIS and EDAS methods showed strong alignment. In both evaluations, the industrial sector demonstrated the highest quality management performance, indicating its strong capacity in terms of output, workforce size, and structured quality practices. Conversely, the construction sector consistently ranked lowest, revealing significant deficiencies in quality implementation and highlighting the need for targeted improvement strategies and comprehensive project management reforms.

Etik Beyan

Within the scope of this study, only publicly available and anonymized secondary data published by the Turkish Statistical Institute (TurkStat) were used. No surveys, interviews, or interventions were conducted with any individuals or groups; the analyses were carried out at the sectoral level using multi-criteria decision-making techniques (AHP, TOPSIS, EDAS). Therefore, in accordance with the guidelines of the Council of Higher Education (YÖK) and international ethical standards, ethics committee approval is not required for this study.

Kaynakça

  • Açan, H. İ. (2016). An application on the effect of total quality management practices on employee job satisfaction (Yayımlanmamış Yüksek lisans tezi), İnönü Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Al-Subhi Al-Harbi, K. M. (2001). Application of the AHP in project management. International Journal of Project Management, 19(1), 19–27. https://doi.org/10.1016/S0263-7863(99)00038-1
  • Asamoah, D., Annan, J., & Nyarko, S. (2012). AHP approach for supplier evaluation and selection in a pharmaceutical manufacturing company in Ghana. International Journal of Business and Management, 7(10), 49–62. https://doi.org/10.5539/ijbm.v7n10p49.
  • Chan, F. T. S., Chan, H. K., Lau, H. C. V., & Ip, R. W. L. (2006). An AHP approach in benchmarking logistics performance of the postal industry. Benchmarking: An International Journal, 13(6), 636–661. https://doi.org/10.1108/14635770610709031.
  • Chan, F. T. S., & Chan, H. K. (2010). An AHP model for selection of suppliers in the fast changing fashion market. The International Journal of Advanced Manufacturing Technology, 51(9–12), 1195–1207. https://doi.org/10.1007/s00170-010-2683-6.
  • Cheng, E. W. L., & Li, H. (2001). Analytic hierarchy process: An approach to determine measures for business performance. Measuring Business Excellence, 5(3), 30–37. https://doi.org/10.1108/EUM0000000005864.
  • Cheng, E. W. L., Li, H., & Ho, D. C. K. (2002). Analytic hierarchy process (AHP): A defective tool when used improperly. Measuring Business Excellence, 6(4), 33–37. https://doi.org/10.1108/13683040210451697ResearchGate+2PolyUScholars Hub+2ingentaconnect.com+2
  • Demireli, E. (2010). TOPSIS multi-criteria decision-making system: An application on public banks in Turkey. Journal of Entrepreneurship and Development, 5(1), 39–51.
  • Ersoy, Y. (2021). Equipment selection for an e-commerce company using Entropy-based TOPSIS, EDAS and CODAS methods during the COVID-19. LogForum, 17(3), 341–358.
  • Gümüş, U. T., Şakar, Z., Akkın, G., & Şahin, M. (2017). Ratios used in financial analysis and firm value relationship: An analysis on cement companies traded in BIST. Black Sea Journal of Social Sciences, 9(16), 1–23.
  • Hung, C. C., & Chen, L. H. (2009). A fuzzy TOPSIS decision making model with entropy weight under intuitionistic fuzzy environment. In Proceedings of the International Multi Conference of Engineers and Computer Scientists (pp. 13–16).
  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer-Verlag. https://doi.org/10.1007/978-3-642-48318-9
  • Juran, J. M., & Godfrey, A. B. (1999). Juran's quality handbook (5th ed.). McGraw-Hill. Lombardi, P., Sokolnikova, T., Suslov, K., Voropai, N., & Styczynski, Z. A. (2016). Isolated power system in Russia: A chance for renewable energies? Renewable Energy, 90, 532–541. https://doi.org/10.1016/j.renene.2016.01.016.
  • Oakland, J. S. (2014). Total quality management and operational excellence: Text with cases (4th ed.). Routledge. https://doi.org/10.4324/9781315815725.
  • Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathematical and Computer Modelling, 40(7–8), 721–727. https://doi.org/10.1016/j.mcm.2004.10.003
  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57.
  • Kumru, M., & Yıldız Kumru, P. (2014). Analytic hierarchy process application in selecting the mode of transport for a logistics company. Journal of Advanced Transportation, 48(9), 974–989. https://doi.org/10.1002/atr.1240
  • Koç, E., & Burhan, H. A. (2014). An analytic hierarchy process (AHP) approach to a real world supplier selection problem: A case study of Carglass Turkey. Global Business and Management Research: An International Journal, 6(1), 1–14.
  • Levary, R. R. (2008). Using the analytic hierarchy process to rank foreign suppliers based on supply risks. Computers & Industrial Engineering, 55(2), 535–542. https://doi.org/10.1016/j.cie.2008.01.010.
  • Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., & Zaeri, M. S. (2007). Project selection by using fuzzy AHP and TOPSIS technique. International Journal of Human and Social Sciences, 1(3), 135– 140.
  • Rao, R. V. (2008). Evaluation of environmentally conscious manufacturing programs using multiple attribute decision-making methods. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(3), 441–451. https://doi.org/10.1243/09544054JEM981,
  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
  • Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 32(7), 841–855. https://doi.org/10.1287/mnsc.32.7.841
  • Shyjith, K., Ilangkumaran, M., & Kumanan, S. (2008). Multi-criteria decision-making approach to evaluate optimum maintenance strategy in textile industry. Journal of Quality in Maintenance Engineering, 14(4), 375–386. https://doi.org/110.1108/13552510810909975.
  • Stević, Ž., Vasiljević, M., Zavadskas, E. K., Sremac, S., & Turskis, Z. (2018). Selection of a carpenter manufacturer using fuzzy EDAS method. Engineering Economics, 29(3), 281–290. https://doi.org/10.5755/j01.ee.29.3.16818.
  • Sureeyatanapas, P., Poophiukhok, P., & Pathumnakul, S. (2018). Green initiatives for logistics service providers: An investigation of antecedent factors and the contributions to corporate goals. Journal of Cleaner Production, 191, 1–14. https://doi.org/10.1016/j.jclepro.2018.04.206.
  • Taylan, O., & Çelik, M. (2019). Use of multi-criteria decision making methods in quality management. Quality Management Journal, 15(2), 99–112.
  • TUİK. (2023). İstatistik veri portalı. https://data.tuik.gov.tr/Kategori/GetKategori?p=sanayi-114&dil=1.

SEKTÖRLERİN KALİTE YÖNETİMİ AÇISINDAN İNCELENMESİ: AHP, TOPSIS VE EDAS YAKLAŞIMI

Yıl 2025, Cilt: 6 Sayı: 1, 1 - 21, 30.06.2025
https://doi.org/10.59113/niibfd.1700746

Öz

Toplam Kalite Yönetimi (TKY), küreselleşen ve dinamik hale gelen piyasa koşullarında rekabet avantajı elde etmek isteyen işletmeler için kritik bir yönetim yaklaşımı haline gelmiştir. Yoğun rekabet ortamında işletmelerin sürdürülebilirliğini sağlayabilmesi için iş performansını ve çalışan memnuniyetini artırması gerekmektedir. Bu bağlamda TKY, organizasyonel süreçlerin her aşamasına kalite anlayışını yerleştirmeyi hedefleyen stratejik bir çerçeve olarak önem kazanmıştır. Bu çalışma, Türkiye’de faaliyet gösteren altı temel ekonomik sektörün 2022 yılına ait kalite yönetimi performanslarını, Türkiye İstatistik Kurumu (TÜİK) tarafından 2023 yılında yayımlanan veriler temelinde değerlendirmeyi amaçlamaktadır. Değerlendirme, kriter ağırlıklandırmasında Analitik Hiyerarşi Süreci (AHP) ve performans sıralamasında TOPSIS ile EDAS yöntemlerini içeren bütünleşik bir Çok Kriterli Karar Verme (ÇKKV) yaklaşımı ile gerçekleştirilmiştir.
Analizde kullanılan kriterler; üretim değeri, çalışan sayısı, verimlilik (üretim değeri/çalışan sayısı), ciro ve girişim sayısıdır. AHP yöntemiyle yapılan ağırlıklandırma sonuçlarına göre, kalite performansını belirlemede en etkili iki kriterin üretim değeri (0.5208) ve çalışan sayısı (0.2495) olduğu belirlenmiştir. Karar matrisinin tutarlılığı, 0.0993’lük tutarlılık oranı (CR) ile doğrulanmış ve yöntemin metodolojik güvenilirliği sağlanmıştır.
TOPSIS ve EDAS yöntemleriyle elde edilen sektör sıralamaları büyük ölçüde örtüşmektedir. Her iki analizde de sanayi sektörü, en yüksek kalite yönetimi performansını sergileyerek; üretim hacmi, iş gücü büyüklüğü ve sistematik kalite uygulamaları açısından güçlü bir yapıya sahip olduğunu göstermiştir. Buna karşılık, her iki yöntemde de inşaat sektörü en düşük sırada yer almış ve bu durum, sektörde kalite yönetimi uygulamalarının yetersizliğini ve kapsamlı iyileştirme stratejilerine olan ihtiyacı ortaya koymuştur.

Etik Beyan

Çalışma kapsamında yalnızca Türkiye İstatistik Kurumu (TÜİK) tarafından yayımlanan, kamuya açık ve anonimleştirilmiş ikincil veriler kullanılmıştır. Hiçbir birey veya grupla anket, görüşme ya da müdahale gerçekleştirilmemiş; analizler çok kriterli karar verme teknikleri (AHP, TOPSIS, EDAS) kullanılarak sektörel düzeyde gerçekleştirilmiştir. Bu nedenle, Yükseköğretim Kurulu (YÖK) yönergeleri ve uluslararası etik standartlar doğrultusunda, söz konusu çalışma için etik kurul onayı alınmasına gerek bulunmamaktadır.

Kaynakça

  • Açan, H. İ. (2016). An application on the effect of total quality management practices on employee job satisfaction (Yayımlanmamış Yüksek lisans tezi), İnönü Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Al-Subhi Al-Harbi, K. M. (2001). Application of the AHP in project management. International Journal of Project Management, 19(1), 19–27. https://doi.org/10.1016/S0263-7863(99)00038-1
  • Asamoah, D., Annan, J., & Nyarko, S. (2012). AHP approach for supplier evaluation and selection in a pharmaceutical manufacturing company in Ghana. International Journal of Business and Management, 7(10), 49–62. https://doi.org/10.5539/ijbm.v7n10p49.
  • Chan, F. T. S., Chan, H. K., Lau, H. C. V., & Ip, R. W. L. (2006). An AHP approach in benchmarking logistics performance of the postal industry. Benchmarking: An International Journal, 13(6), 636–661. https://doi.org/10.1108/14635770610709031.
  • Chan, F. T. S., & Chan, H. K. (2010). An AHP model for selection of suppliers in the fast changing fashion market. The International Journal of Advanced Manufacturing Technology, 51(9–12), 1195–1207. https://doi.org/10.1007/s00170-010-2683-6.
  • Cheng, E. W. L., & Li, H. (2001). Analytic hierarchy process: An approach to determine measures for business performance. Measuring Business Excellence, 5(3), 30–37. https://doi.org/10.1108/EUM0000000005864.
  • Cheng, E. W. L., Li, H., & Ho, D. C. K. (2002). Analytic hierarchy process (AHP): A defective tool when used improperly. Measuring Business Excellence, 6(4), 33–37. https://doi.org/10.1108/13683040210451697ResearchGate+2PolyUScholars Hub+2ingentaconnect.com+2
  • Demireli, E. (2010). TOPSIS multi-criteria decision-making system: An application on public banks in Turkey. Journal of Entrepreneurship and Development, 5(1), 39–51.
  • Ersoy, Y. (2021). Equipment selection for an e-commerce company using Entropy-based TOPSIS, EDAS and CODAS methods during the COVID-19. LogForum, 17(3), 341–358.
  • Gümüş, U. T., Şakar, Z., Akkın, G., & Şahin, M. (2017). Ratios used in financial analysis and firm value relationship: An analysis on cement companies traded in BIST. Black Sea Journal of Social Sciences, 9(16), 1–23.
  • Hung, C. C., & Chen, L. H. (2009). A fuzzy TOPSIS decision making model with entropy weight under intuitionistic fuzzy environment. In Proceedings of the International Multi Conference of Engineers and Computer Scientists (pp. 13–16).
  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer-Verlag. https://doi.org/10.1007/978-3-642-48318-9
  • Juran, J. M., & Godfrey, A. B. (1999). Juran's quality handbook (5th ed.). McGraw-Hill. Lombardi, P., Sokolnikova, T., Suslov, K., Voropai, N., & Styczynski, Z. A. (2016). Isolated power system in Russia: A chance for renewable energies? Renewable Energy, 90, 532–541. https://doi.org/10.1016/j.renene.2016.01.016.
  • Oakland, J. S. (2014). Total quality management and operational excellence: Text with cases (4th ed.). Routledge. https://doi.org/10.4324/9781315815725.
  • Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathematical and Computer Modelling, 40(7–8), 721–727. https://doi.org/10.1016/j.mcm.2004.10.003
  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57.
  • Kumru, M., & Yıldız Kumru, P. (2014). Analytic hierarchy process application in selecting the mode of transport for a logistics company. Journal of Advanced Transportation, 48(9), 974–989. https://doi.org/10.1002/atr.1240
  • Koç, E., & Burhan, H. A. (2014). An analytic hierarchy process (AHP) approach to a real world supplier selection problem: A case study of Carglass Turkey. Global Business and Management Research: An International Journal, 6(1), 1–14.
  • Levary, R. R. (2008). Using the analytic hierarchy process to rank foreign suppliers based on supply risks. Computers & Industrial Engineering, 55(2), 535–542. https://doi.org/10.1016/j.cie.2008.01.010.
  • Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., & Zaeri, M. S. (2007). Project selection by using fuzzy AHP and TOPSIS technique. International Journal of Human and Social Sciences, 1(3), 135– 140.
  • Rao, R. V. (2008). Evaluation of environmentally conscious manufacturing programs using multiple attribute decision-making methods. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(3), 441–451. https://doi.org/10.1243/09544054JEM981,
  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
  • Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 32(7), 841–855. https://doi.org/10.1287/mnsc.32.7.841
  • Shyjith, K., Ilangkumaran, M., & Kumanan, S. (2008). Multi-criteria decision-making approach to evaluate optimum maintenance strategy in textile industry. Journal of Quality in Maintenance Engineering, 14(4), 375–386. https://doi.org/110.1108/13552510810909975.
  • Stević, Ž., Vasiljević, M., Zavadskas, E. K., Sremac, S., & Turskis, Z. (2018). Selection of a carpenter manufacturer using fuzzy EDAS method. Engineering Economics, 29(3), 281–290. https://doi.org/10.5755/j01.ee.29.3.16818.
  • Sureeyatanapas, P., Poophiukhok, P., & Pathumnakul, S. (2018). Green initiatives for logistics service providers: An investigation of antecedent factors and the contributions to corporate goals. Journal of Cleaner Production, 191, 1–14. https://doi.org/10.1016/j.jclepro.2018.04.206.
  • Taylan, O., & Çelik, M. (2019). Use of multi-criteria decision making methods in quality management. Quality Management Journal, 15(2), 99–112.
  • TUİK. (2023). İstatistik veri portalı. https://data.tuik.gov.tr/Kategori/GetKategori?p=sanayi-114&dil=1.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nicel Karar Yöntemleri, Yöneylem, İşletme
Bölüm Araştırma Makalesi
Yazarlar

Nasibe Erdoğan 0000-0003-4633-3874

Engin Çakır 0000-0002-5906-4178

İrfan Ertuğrul 0000-0002-5283-191X

Gönderilme Tarihi 16 Mayıs 2025
Kabul Tarihi 17 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Erdoğan, N., Çakır, E., & Ertuğrul, İ. (2025). ANALYSING THE SECTORS IN TERMS OF QUALITY MANAGEMENT: AHP, TOPSIS AND EDAS APPROACH. Nazilli İktisadi ve İdari Bilimler Fakültesi Dergisi, 6(1), 1-21. https://doi.org/10.59113/niibfd.1700746
Şablon için tıklayınız..