Derleme
BibTex RIS Kaynak Göster

Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar

Yıl 2020, , 84 - 92, 20.04.2020
https://doi.org/10.37696/nkmj.679069

Öz

İki boyutlu (2B) hücre kültürü, hücre temelli araştırmalar için değerli bir yöntemdir ancak in vivo yanıtlar hakkında öngörülemeyen, yanıltıcı veriler sağlayabilir. Son yirmi yılda, hücresel mikro çevrenin (örneğin hücre dışı matris ve interstisyel sıvı) önemine farkındalık artmıştır. 3B hücre kültürü olarak adlandırılan bu yeni hücre kültürü paradigması hızla popülerlik kazanıyor. 2B'den 3B kültür tekniklerine geçiş, fizyolojik olarak daha uygun doku modellerine doğru önemli bir adımdır. 3B hücre kültürleri farklı amaçlar için faklı teknikler sunar ve gereksinime göre kullanıcıların en uygun modeli seçmeleri gerekir. 3B hücre kültürü sistemleri, kök hücre çalışmaları, ilaç keşifleri, kanser araştırmaları, gen ve protein ifade çalışmaları ve daha birçok karmaşık fizyolojik mekanizmanın aydınlatılabilmesi için bu alanlarda kullanıldığı görülmektedir. İn vitro çalışmalar; 3B hücre kültürlerinin ortaya çıkmasıyla, 2B kültürler ile mümkün olmayan karmaşık etkileşimleri incelemek için üstün yapılar sunarlar.

Kaynakça

  • Referans 1. Ravi M, Paramesh V, Kaviya S, Anuradha E, Solomon FP. 3D cell culture systems: advantages and applications. Journal of cellular physiology. 2015;230(1):16-26.
  • Referans 2. Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue‐like structures to be created in vitro. Journal of anatomy. 2015;227(6):746-756.
  • Referans 3. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends in cell biology. 2011;21(12):745-754.
  • Referans 4. Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32(4):266-277.
  • Referans 5. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Engineering Part A. 2008;15(2):205-219.
  • Referans 6. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075.
  • Referans 7. Underhill GH, Bhatia SN. High-throughput analysis of signals regulating stem cell fate and function. Current opinion in chemical biology. 2007;11(4):357-366.
  • Referans 8. Freshney R. Culture of Animal Cells: A Manual of Basic Technique: Wiley-Liss; 2005.
  • Referans 9. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies. 2014;12(4):207-218. Referans 10. Choi SW, Yeh YC, Zhang Y, Sung HW, Xia Y. Uniform beads with controllable pore sizes for biomedical applications. Small. 2010;6(14):1492-1498.
  • Referans 11. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Lomas C, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC biology. 2012;10(1):29.
  • Referans 12. Schoenenberger C-A, Zuk A, Zinkl GM, Kendall D, Matlin KS. Integrin expression and localization in normal MDCK cells and transformed MDCK cells lacking apical polarity. Journal of Cell Science. 1994;107(2):527-541.
  • Referans 13. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30(3):256-268.
  • Referans 14. Weaver VM, Petersen OW, Wang F, Larabell C, Briand P, Damsky C, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. The Journal of cell biology. 1997;137(1):231-245.
  • Referans 15. Lin CQ, Bissell MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. The FASEB Journal. 1993;7(9):737-743.
  • Referans 16. Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nature Reviews Cancer. 2016;16(1):56.
  • Referans 17. Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015-3024.
  • Referans 18. Bonnier F, Keating M, Wrobel TP, Majzner K, Baranska M, Garcia-Munoz A, et al. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicology in vitro. 2015;29(1):124-131.
  • Referans 19. Friedl P, Sahai E, Weiss S, Yamada KM. New dimensions in cell migration. Nature reviews Molecular cell biology. 2012;13(11):743.
  • Referans 20. Chitcholtan K, Asselin E, Parent S, Sykes PH, Evans JJ. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Experimental cell research. 2013;319(1):75-87.
  • Referans 21. Mabry KM, Payne SZ, Anseth KS. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials. 2016;74:31-41.
  • Referans 22. Pineda ET, Nerem RM, Ahsan T. Differentiation patterns of embryonic stem cells in two-versus three-dimensional culture. Cells Tissues Organs. 2013;197(5):399-410. Referans 23. Ji C, Khademhosseini A, Dehghani F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials. 2011;32(36):9719-9729.
  • Referans 24. Kimlin LC, Casagrande G, Virador VM. In vitro three‐dimensional (3D) models in cancer research: an update. Molecular carcinogenesis. 2013;52(3):167-182.
  • Referans 25. Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell JA, Lutolf MP, et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010;31(32):8454-8464.
  • Referans 26. Gjorevski N, Piotrowski AS, Varner VD, Nelson CM. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Scientific reports. 2015;5:11458.
  • Referans 27. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends in cell biology. 2003;13(5):264-269.
  • Referans 28. Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, et al. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials. 2011;32(26):6052-6058.
  • Referans 29. Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Engineering Part A. 2010;17(5-6):713-724.
  • Referans 30. Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proceedings of the National Academy of Sciences. 1998;95(25):14821-14826. Referans 31. Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B. 3D traction forces in cancer cell invasion. PloS one. 2012;7(3):e33476.
  • Referans 32. Steinwachs J, Metzner C, Skodzek K, Lang N, Thievessen I, Mark C, et al. Three-dimensional force microscopy of cells in biopolymer networks. Nature methods. 2016;13(2):171.
  • Referans 33. Wang K, Cai L-H, Lan B, Fredberg JJ. Hidden in the mist no more: physical force in cell biology. Nature methods. 2016;13(2):124.
  • Referans 34. Abbott A. Biology's new dimension: Nature Publishing Group; 2003.
  • Referans 35. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487.
  • Referans 36. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews. 2008;14(1):61-86.
  • Referans 37. Lavik E, Langer R. Tissue engineering: current state and perspectives. Applied microbiology and biotechnology. 2004;65(1):1-8.
  • Referans 38. Lin RZ, Chang HY. Recent advances in three‐dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal: Healthcare Nutrition Technology. 2008;3(9‐10):1172-1184.
  • Referans 39. Moroni L, De Wijn J, Van Blitterswijk C. Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science, Polymer Edition. 2008;19(5):543-572.
  • Referans 40. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Advanced materials. 2009;21(32‐33):3307-3329.
  • Referans 41. Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, et al. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PloS one. 2010;5(8):e12180.
  • Referans 42. Greco K, Iqbal A, Rattazzi L, Nalesso G, Moradi-Bidhendi N, Moore A, et al. High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochemical pharmacology. 2011;82(12):1919-1929.
  • Referans 43. Rivron NC, Raiss CC, Liu J, Nandakumar A, Sticht C, Gretz N, et al. Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation. Proceedings of the National Academy of Sciences. 2012;109(12):4413-4418.
  • Referans 44. Rivron NC, Rouwkema J, Truckenmüller R, Karperien M, De Boer J, Van Blitterswijk CA. Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials. 2009;30(28):4851-4858.
  • Referans 45. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends in biotechnology. 2013;31(2):108-115.
  • Referans 46. Harrison RG, Greenman M, Mall FP, Jackson C. Observations of the living developing nerve fiber. The Anatomical Record. 1907;1(5):116-128.
  • Referans 47. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Current opinion in biotechnology. 2015;35:118-126.
  • Referans 48. Yuhas JM, Li AP, Martinez AO, Ladman AJ. A simplified method for production and growth of multicellular tumor spheroids. Cancer research. 1977;37(10):3639-3643.
  • Referans 49. Handschel JG, Depprich RA, Kübler NR, Wiesmann H-P, Ommerborn M, Meyer U. Prospects of micromass culture technology in tissue engineering. Head & face medicine. 2007;3(1):4.
  • Referans 50. Rivron NC, Vrij EJ, Rouwkema J, Le Gac S, van den Berg A, Truckenmüller RK, et al. Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proceedings of the National Academy of Sciences. 2012;109(18):6886-6891.
  • Referans 51. Napolitano AP, Chai P, Dean DM, Morgan JR. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue engineering. 2007;13(8):2087-2094.
  • Referans 52. Torisawa Y-s, Chueh B-h, Huh D, Ramamurthy P, Roth TM, Barald KF, et al. Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab on a Chip. 2007;7(6):770-776.
  • Referans 53. Chung BG, Lee K-H, Khademhosseini A, Lee S-H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on a Chip. 2012;12(1):45-59.
  • Referans 54. Huang GY, Zhou LH, Zhang QC, Chen YM, Sun W, Xu F, et al. Microfluidic hydrogels for tissue engineering. Biofabrication. 2011;3(1):012001.
  • Referans 55. Ruedinger F, Lavrentieva A, Blume C, Pepelanova I, Scheper T. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Applied microbiology and biotechnology. 2015;99(2):623-636.
  • Referans 56. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368.
  • Referans 57. Li X, Valadez AV, Zuo P, Nie Z. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis. 2012;4(12):1509-1525.
  • Referans 58. Gogoi P, Sepehri S, Zhou Y, Gorin MA, Paolillo C, Capoluongo E, et al. Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PloS one. 2016;11(1):e0147400.
  • Referans 59. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181.
  • Referans 60. Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochimica et Biophysica Acta (BBA)-General Subjects. 2013;1830(2):2470-2480.
  • Referans 61. Andersen T, Auk-Emblem P, Dornish M. 3D cell culture in alginate hydrogels. Microarrays. 2015;4(2):133-161.
  • Referans 62. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature biotechnology. 2014;32(8):773.
  • Referans 63. Yu Y, Zhang Y, Martin JA, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. Journal of biomechanical engineering. 2013;135(9):091011.
  • Referans 64. Cui X, Breitenkamp K, Finn M, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A. 2012;18(11-12):1304-1312.
  • Referans 65. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering Part C: Methods. 2013;20(6):473-484.
  • Referans 66. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends in biotechnology. 2013;31(1):10-19.
  • Referans 67. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends in biotechnology. 2015;33(9):504-513.
  • Referans 68. Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC. 3D matrices for anti-cancer drug testing and development. Oncology Issues. 2010;25(1):20-25.
  • Referans 69. Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proceedings of the national academy of sciences. 2012;109(24):9342-9347.
  • Referans 70. Bischel LL, Young EW, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34(5):1471-1477.
  • Referans 71. Verbridge SS, Chakrabarti A, DelNero P, Kwee B, Varner JD, Stroock AD, et al. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. Journal of biomedical materials research Part A. 2013;101(10):2948-2956.
  • Referans 72. Hockemeyer K, Janetopoulos C, Terekhov A, Hofmeister W, Vilgelm A, Costa L, et al. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment. Biomicrofluidics. 2014;8(4):044105.
  • Referans 73. Haessler U, Teo JC, Foretay D, Renaud P, Swartz MA. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integrative Biology. 2011;4(4):401-409.
  • Referans 74. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences. 2012;109(34):13515-13520.
  • Referans 75. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35(8):2454-2461.
  • Referans 76. Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab on a Chip. 2013;13(8):1489-1500.
  • Referans 77. Tourovskaia A, Fauver M, Kramer G, Simonson S, Neumann T. Tissue-engineered microenvironment systems for modeling human vasculature. Experimental biology and medicine. 2014;239(9):1264-1271.
  • Referans 78. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. In vitro model of tumor cell extravasation. PloS one. 2013;8(2):e56910.
  • Referans 79. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nature Reviews Cancer. 2012;12(3):210.
  • Referans 80. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiological reviews. 2012;92(3):1005-1060.
  • Referans 81. Munson JM, Bellamkonda RV, Swartz MA. Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer research. 2013;73(5):1536-1546.
  • Referans 82. Nguyen D-HT, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proceedings of the National Academy of Sciences. 2013;110(17):6712-6717.
  • Referans 83. Lee H, Kim S, Chung M, Kim JH, Jeon NL. A bioengineered array of 3D microvessels for vascular permeability assay. Microvascular research. 2014;91:90-98.
  • Referans 84. Wood LB, Ge R, Kamm RD, Asada HH. Nascent vessel elongation rate is inversely related to diameter in in vitro angiogenesis. Integrative Biology. 2012;4(9):1081-1089.
  • Referans 85. Fang C, Avis I, Salomon D, Cuttitta F. Novel phenotypic fluorescent three-dimensional platforms for high-throughput drug screening and personalized chemotherapy. Journal of Cancer. 2013;4(5):402.
  • Referans 86. Ma L, Zhang B, Zhou C, Li Y, Li B, Yu M, et al. The comparison genomics analysis with glioblastoma multiforme (GBM) cells under 3D and 2D cell culture conditions. Colloids and Surfaces B: Biointerfaces. 2018;172:665-673.
  • Referans 87. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. British journal of pharmacology. 2011;162(6):1239-1249.
  • Referans88. Tanner K, Gottesman MM. Beyond 3D culture models of cancer. Science translational medicine. 2015;7(283):283ps289-283ps289.
  • Referans89. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al. Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncology reports. 2015;33(4):1837-1843.
  • Referans 90. Pampaloni F, Stelzer EH, Masotti A. Three-dimensional tissue models for drug discovery and toxicology. Recent patents on biotechnology. 2009;3(2):103-117.
  • Referans 91. Lin Z, Will Y. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicological Sciences. 2011;126(1):114-127.
  • Referans 92. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013;500(7461):217.
  • Referans 93. Luo Y, Lou C, Zhang S, Zhu Z, Xing Q, Wang P, et al. Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes. Cytotherapy. 2018;20(1):95-107.
  • Referans 94. Farrell E, Byrne E, Fischer J, O'brien F, O'connell B, Prendergast P, et al. A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds. Technology and Health Care. 2007;15(1):19-31.
  • Referans 95. Erickson IE, Huang AH, Chung C, Li RT, Burdick JA, Mauck RL. Differential maturation and structure–function relationships in mesenchymal stem cell-and chondrocyte-seeded hydrogels. Tissue Engineering Part A. 2008;15(5):1041-1052.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Elif Polat 0000-0001-6808-5467

Yayımlanma Tarihi 20 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Polat, E. (2020). Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar. Namık Kemal Tıp Dergisi, 8(1), 84-92. https://doi.org/10.37696/nkmj.679069
AMA Polat E. Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar. NKMJ. Nisan 2020;8(1):84-92. doi:10.37696/nkmj.679069
Chicago Polat, Elif. “Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar”. Namık Kemal Tıp Dergisi 8, sy. 1 (Nisan 2020): 84-92. https://doi.org/10.37696/nkmj.679069.
EndNote Polat E (01 Nisan 2020) Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar. Namık Kemal Tıp Dergisi 8 1 84–92.
IEEE E. Polat, “Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar”, NKMJ, c. 8, sy. 1, ss. 84–92, 2020, doi: 10.37696/nkmj.679069.
ISNAD Polat, Elif. “Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar”. Namık Kemal Tıp Dergisi 8/1 (Nisan 2020), 84-92. https://doi.org/10.37696/nkmj.679069.
JAMA Polat E. Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar. NKMJ. 2020;8:84–92.
MLA Polat, Elif. “Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar”. Namık Kemal Tıp Dergisi, c. 8, sy. 1, 2020, ss. 84-92, doi:10.37696/nkmj.679069.
Vancouver Polat E. Üç Boyutlu Hücre Kültürü Sistemlerine Güncel Yaklaşımlar. NKMJ. 2020;8(1):84-92.