Araştırma Makalesi
BibTex RIS Kaynak Göster

BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ

Yıl 2018, Cilt: 13 Sayı: 3, 142 - 150, 24.07.2018

Öz

En
önemli antioksidan kaynaklarından biri olan nar (Punica granatum L.) meyvesi
uçucu bileşen içeriği bakımından da zengindir. Ege Tarımsal Araştırmalar
Enstitüsü’nde yeni nar çeşit adaylarının elde edilmesine yönelik ıslah
çalışmaları kapsamında elde edilen aday çeşitlerden ümitvar olarak seçilen 4
melez genotip, bu çalışmanın materyali olarak kullanılmıştır. Bu araştırmada,
standart çeşit olarak seçilen İzmir-1513 (Hicaznar) çeşidi ile ümitvar olarak
seçilen 18, 19, 38 ve 40 genotiplerinin, aromalarını oluşturan uçucu
bileşenlerinin belirlenmesi ve karşılaştırılması amaçlanmıştır. Çeşit
adaylarının uçucu bileşen içerikleri, dietil eter çözgeni kullanılarak
sıvı-sıvı ekstraksiyon metodu ile ekstrakte edilmiştir. Ekstrakte edilen
örneklere ait aroma bileşenlerin miktarları ve tanımlamaları gaz kromatografisi
kütle spektrometresi (Shimadzu QP2010 GC/MS) cihazında belirlenmiştir.
Araştırmaya dahil edilen nar çeşit ve tiplerinin aroma profillerinde 14 adet
alkol, 14 adet ester, 8 adet terpen, 8 adet aldehit, 5 adet keton, 3 adet
doymuş hidrokarbon ve 2 adet de fenol olmak üzere toplam 54 adet uçucu bileşik
tespit edilmiştir. Çalışma sonucuna göre, ‘Fernesil asetat’ ve ‘limonene’
bileşikleri sırasıyla Tip 19 ve Tip 18’de önemli uçucu bileşenler olarak tespit
edilmiştir. Bu genotilerin aroma bakımından gerek sofralık tüketim için,
gerekse de meyve suyuna işleme açısından değerlendirilmesinin uygun olduğu düşünülmektedir.

Kaynakça

  • 1. Raisi, A., Aroujalian, A., and Kaghazchi T., (2008). Multicomponent Pervaporation Process for Volatile Aroma Compounds Recovery from Pomegranate Juice, Journal of Membrane Science, 322, 339–348.
  • 2. Gündoğdu, M., Yılmaz, H., and Canan, İ., (2015). Nar (Punica granatum L.) Çeşit ve Genotiplerin Fizikokimyasal Karakterizasyonu, Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 1(2), 57–65.
  • 3. Facial, A. and Ocalhau, C.A., (2011). The Bioactivity of Pomegranate: Impact on Health and Disease, Critical Reviews in Food Science and Nutrition, 51, 626–634.
  • 4. Johanningsmeier, S.D. and Harris, G.K., (2011). Pomegranate as a Functional Food and Nutraceutical Source, Annual Review of Food Science and Technology, 2, 181–201.
  • 5. Viuda–Martos, M., Fernandez–Lopez, J., and Perez–Alvarez, J.A., (2010). Pomegranate and Its Many Functional Components as Related to Human Health: A Review, Comprehensive Reviews in Food Science and Food Safety, 9, 635–654.
  • 6. Rymon, D., (2011). Mapping Features of the Global Pomegranate Market, Acta Horticulturae, 890, 599–602.
  • 7. Holland, D., Hatib, K., and Bar–Ya’akov, I., (1991). Pomegranate: Botany, Horticulture, Breeding. Horticultural Reviews, 35, 127–191.
  • 8. Mattheis, J.P., Fellman, J.K., Chen, P.M., and Patterson, M.E., (1991). Changes in Headspace Volatiles during Physiological Development of ‘Bisbee Delicious’ Apple Fruit, Journal of Agricultural Food Chemistry, 39, 1902–1906.
  • 9. Amira, E.A., Guido, F., Behija, S.E., Manel, I., Nesrine, Z., Ali, F., Mohamed, H., Noureddine, H.A., and Lotfi, A., (2011). Chemical and Aroma Volatile Compositions of Date Palm Haider, Khan, Naqvi, Jaskani, Nafees, Maryam & Pasha 582 (Phoenix dactylifera L.) Fruits at Three Maturation Stages, Food Chemistry, 127, 1744–1754.
  • 10. Nie, L.C., Sun, J.S., Chen, H.J., and Zou, X.W., (2006). Study on Fruit Aroma of Different Apple Cultivars, Scientia Agricultura Sinica, 39, 641–646.
  • 11. Bomben, J.L., Bruin, S., Thijssen, H.A.C., and Merson, R.L., (1973). Aroma Recovery and Retention in Concentration and Drying of Foods, Advances in Food Research, 20, 1–111.
  • 12. Tripathi, J., Chatterjee, S., Gamre, S., Chattopadhyay, S., Variyar, P.S., and Sharma, A., (2014). Analysis of Free and Bound Aroma Compounds of Pomegranate (Punica granatum L.), LWT - Food Science and Technology, 59, 461–466.
  • 13. Solis–Solis, H.M., Santoyo, M.C., Golindo, S.S., Solano, G.L., and Sanchez, J.A.R., (2007). Charaterization of Aroma Potential of Apricot Varieties Using Different Extraction Techniques, Food Chemistry, 105, 829–837.
  • 14. Bedoukian, P.Z., (1967). Perfumery and Flavoring Synthetics, Elsevier Publishing Co, Amsterdam.
  • 15. Richard, H., (1992). Connaissance de la Nature des Arômes, In: Richard, H., Multon, J.L. (Eds.), Les Arômes Alimentaires, Tec & Doc Lavoisier, Paris, 21–37.
  • 16. Vázquez–Araújo, L., Chambers, I.V.E., Adhikari, K., and Carbonell–Barrachina, A.A., (2010). Sensory and Physico-Chemical Characterization of Juices Made with Pomegranate and Blueberries, Blackberries and Raspberries, Journal of Food Science, 75(7), 398–404.
  • 17. Duman, A.D., Ozgen, M., Dayisoylu, K.S., Erbil, N., and Durgac, C., (2009). Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics, Molecules, 14, 1808–1817.
  • 18. SAFC, (2012). Flavors & Fragrances. European Ed. Catalogue 2012. Madrid: SAFC Specialties.
  • 19. Belitz, H.D., Grosch, W., and Schieberle, P., (2009). Food Chemistry, Springer, Berlin.
  • 20. Çağır, F. and Ekinci N., (2016). Bazı Nar Melez Genotiplerinin Muhafaza Performanslarının Belirlenmesi, Bahçe Özel Sayı. VII. Ulusal Bahçe Bitkileri Kongresi Bildirileri, 45(1), 92–97.
  • 21. De Nigris, F., Williams-Ignarro, S., Lerman, L.O., Crimi, E., Botti, C., Mansueto, G., D’Armiento, F.P., De Rosa, G., Sica, V., and Ignarro, L.J., (2005). Beneficial Effects of Pomegranate Juice on Oxidation-Sensitive Genes and Endothelial Nitric Oxide Synthase Capacity at Sites of Perturbed Shear Stress, Proc. Natl. Acad. Sci. USA, 102(13), 4896.
  • 22. Elfalleh, W., Tlili, N., Nasri, N., Yahia, Y., Hannachi, H., Chaira, N., Ying, M., Ferchichi, A., (2011). Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits, J. Food Sci., 76(5).
  • 23. Melgarejo, P., Sa´nchez, A.C., Va´zquez-Arau´jo, L., Herna´ndez, F., Jose´ Martı´nez, J., Legua, P., and Carbonell-Barrachina, A.A., (2011). Volatile Composition of Pomegranates from 9 Spanish Cultivars Using Headspace Solid Phase Micro Extraction, J Food Sci 76: 114–120.
  • 24. Vazquez-Araujo, L., Chambers, I.E., Adhikari, K., Carbonell-Barrachina, A.A., (2010). Sensory and Physicochemical Characterization of Juices Made with Pomegranate and Blueberries, Blackberries, or Raspberries, Journal of Food Science, 75(7), 399-406. DOI: 10.1111/j.1750-3841.2010.01779.x.
  • 25. Viuda-martos, M., Ciro-gómez, G.L., Ruiz-navajas, Y., Zapata-montoya, J.E., Sendra, E., Pérez-álvarez, J.A., (2012). In Vitro Antioxidant and Antibacterial Activities of Extracts from Annatto (Bixa orellana L.) Leaves and Seeds. J. Food Safety, 32, 399-406.
  • 26. Güler, Z. and Gül, E., (2017). Volatile Organic Compounds in The Aril Juices and Seeds from Selected Five Pomegranate (Punica granatum L.) Cultivars, International Journal of Food Properties, 20:2, 281-293. DOI: 10.1080/10942912.2016.1155057.
  • 27. Chen, L., Zhang, X.Z., Jin, Q., Yang, L., Li, J., and Chen, F., (2015). Free and Bound Volatile Chemicals in Mulberry (Morus atropurpurea Roxb.). Journal of Food Science 80(5), 975–982.

DETERMINATION OF AROMATIC COMPOUNDS OF SOME PROMISING POMEGRANATE GENOTYPES

Yıl 2018, Cilt: 13 Sayı: 3, 142 - 150, 24.07.2018

Öz

Pomegranate (Punica
granatum
L.) fruit, one of the most important antioxidant sources, is also
rich in volatile component content. Four hybrid genotypes were used as material
for this study. Those varieties were selected as promising varieties in
breeding programme that carried out in Institute of Aegean Agricultural
Research. It was aimed to determine the volatile constituents of the flavors of
‘Type 18’, ‘Type 19’, ‘Type 38’ and ‘Type 40’ by comparing of İ-1513 which is
considered as standard variety. Volatile component contents of fruits of each
genotype were extracted by using diethyl ether solvent for liquid–liquid
extractions. The amounts and identifications of the volatile compounds of
extracted samples determined with a gas chromatograph–mass spectrometer.
According to the obtained results, a total of 54 volatile compounds were
determined in total pomegranate aroma profiles, including 14 alcohols, 14
esters, 8 terpenes, 8 aldehydes, 5 ketones, 3 saturated hydrocarbons and 2
phenols. ‘Farnesyl Acetate’ and ‘Limonene’ were found as important volatiles in
Type 19 and Type 18, respectively. Those genotypes should be considered for both
of table consumption and processing for fruit juice, in terms of aroma.

Kaynakça

  • 1. Raisi, A., Aroujalian, A., and Kaghazchi T., (2008). Multicomponent Pervaporation Process for Volatile Aroma Compounds Recovery from Pomegranate Juice, Journal of Membrane Science, 322, 339–348.
  • 2. Gündoğdu, M., Yılmaz, H., and Canan, İ., (2015). Nar (Punica granatum L.) Çeşit ve Genotiplerin Fizikokimyasal Karakterizasyonu, Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 1(2), 57–65.
  • 3. Facial, A. and Ocalhau, C.A., (2011). The Bioactivity of Pomegranate: Impact on Health and Disease, Critical Reviews in Food Science and Nutrition, 51, 626–634.
  • 4. Johanningsmeier, S.D. and Harris, G.K., (2011). Pomegranate as a Functional Food and Nutraceutical Source, Annual Review of Food Science and Technology, 2, 181–201.
  • 5. Viuda–Martos, M., Fernandez–Lopez, J., and Perez–Alvarez, J.A., (2010). Pomegranate and Its Many Functional Components as Related to Human Health: A Review, Comprehensive Reviews in Food Science and Food Safety, 9, 635–654.
  • 6. Rymon, D., (2011). Mapping Features of the Global Pomegranate Market, Acta Horticulturae, 890, 599–602.
  • 7. Holland, D., Hatib, K., and Bar–Ya’akov, I., (1991). Pomegranate: Botany, Horticulture, Breeding. Horticultural Reviews, 35, 127–191.
  • 8. Mattheis, J.P., Fellman, J.K., Chen, P.M., and Patterson, M.E., (1991). Changes in Headspace Volatiles during Physiological Development of ‘Bisbee Delicious’ Apple Fruit, Journal of Agricultural Food Chemistry, 39, 1902–1906.
  • 9. Amira, E.A., Guido, F., Behija, S.E., Manel, I., Nesrine, Z., Ali, F., Mohamed, H., Noureddine, H.A., and Lotfi, A., (2011). Chemical and Aroma Volatile Compositions of Date Palm Haider, Khan, Naqvi, Jaskani, Nafees, Maryam & Pasha 582 (Phoenix dactylifera L.) Fruits at Three Maturation Stages, Food Chemistry, 127, 1744–1754.
  • 10. Nie, L.C., Sun, J.S., Chen, H.J., and Zou, X.W., (2006). Study on Fruit Aroma of Different Apple Cultivars, Scientia Agricultura Sinica, 39, 641–646.
  • 11. Bomben, J.L., Bruin, S., Thijssen, H.A.C., and Merson, R.L., (1973). Aroma Recovery and Retention in Concentration and Drying of Foods, Advances in Food Research, 20, 1–111.
  • 12. Tripathi, J., Chatterjee, S., Gamre, S., Chattopadhyay, S., Variyar, P.S., and Sharma, A., (2014). Analysis of Free and Bound Aroma Compounds of Pomegranate (Punica granatum L.), LWT - Food Science and Technology, 59, 461–466.
  • 13. Solis–Solis, H.M., Santoyo, M.C., Golindo, S.S., Solano, G.L., and Sanchez, J.A.R., (2007). Charaterization of Aroma Potential of Apricot Varieties Using Different Extraction Techniques, Food Chemistry, 105, 829–837.
  • 14. Bedoukian, P.Z., (1967). Perfumery and Flavoring Synthetics, Elsevier Publishing Co, Amsterdam.
  • 15. Richard, H., (1992). Connaissance de la Nature des Arômes, In: Richard, H., Multon, J.L. (Eds.), Les Arômes Alimentaires, Tec & Doc Lavoisier, Paris, 21–37.
  • 16. Vázquez–Araújo, L., Chambers, I.V.E., Adhikari, K., and Carbonell–Barrachina, A.A., (2010). Sensory and Physico-Chemical Characterization of Juices Made with Pomegranate and Blueberries, Blackberries and Raspberries, Journal of Food Science, 75(7), 398–404.
  • 17. Duman, A.D., Ozgen, M., Dayisoylu, K.S., Erbil, N., and Durgac, C., (2009). Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics, Molecules, 14, 1808–1817.
  • 18. SAFC, (2012). Flavors & Fragrances. European Ed. Catalogue 2012. Madrid: SAFC Specialties.
  • 19. Belitz, H.D., Grosch, W., and Schieberle, P., (2009). Food Chemistry, Springer, Berlin.
  • 20. Çağır, F. and Ekinci N., (2016). Bazı Nar Melez Genotiplerinin Muhafaza Performanslarının Belirlenmesi, Bahçe Özel Sayı. VII. Ulusal Bahçe Bitkileri Kongresi Bildirileri, 45(1), 92–97.
  • 21. De Nigris, F., Williams-Ignarro, S., Lerman, L.O., Crimi, E., Botti, C., Mansueto, G., D’Armiento, F.P., De Rosa, G., Sica, V., and Ignarro, L.J., (2005). Beneficial Effects of Pomegranate Juice on Oxidation-Sensitive Genes and Endothelial Nitric Oxide Synthase Capacity at Sites of Perturbed Shear Stress, Proc. Natl. Acad. Sci. USA, 102(13), 4896.
  • 22. Elfalleh, W., Tlili, N., Nasri, N., Yahia, Y., Hannachi, H., Chaira, N., Ying, M., Ferchichi, A., (2011). Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits, J. Food Sci., 76(5).
  • 23. Melgarejo, P., Sa´nchez, A.C., Va´zquez-Arau´jo, L., Herna´ndez, F., Jose´ Martı´nez, J., Legua, P., and Carbonell-Barrachina, A.A., (2011). Volatile Composition of Pomegranates from 9 Spanish Cultivars Using Headspace Solid Phase Micro Extraction, J Food Sci 76: 114–120.
  • 24. Vazquez-Araujo, L., Chambers, I.E., Adhikari, K., Carbonell-Barrachina, A.A., (2010). Sensory and Physicochemical Characterization of Juices Made with Pomegranate and Blueberries, Blackberries, or Raspberries, Journal of Food Science, 75(7), 399-406. DOI: 10.1111/j.1750-3841.2010.01779.x.
  • 25. Viuda-martos, M., Ciro-gómez, G.L., Ruiz-navajas, Y., Zapata-montoya, J.E., Sendra, E., Pérez-álvarez, J.A., (2012). In Vitro Antioxidant and Antibacterial Activities of Extracts from Annatto (Bixa orellana L.) Leaves and Seeds. J. Food Safety, 32, 399-406.
  • 26. Güler, Z. and Gül, E., (2017). Volatile Organic Compounds in The Aril Juices and Seeds from Selected Five Pomegranate (Punica granatum L.) Cultivars, International Journal of Food Properties, 20:2, 281-293. DOI: 10.1080/10942912.2016.1155057.
  • 27. Chen, L., Zhang, X.Z., Jin, Q., Yang, L., Li, J., and Chen, F., (2015). Free and Bound Volatile Chemicals in Mulberry (Morus atropurpurea Roxb.). Journal of Food Science 80(5), 975–982.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mehmet Ali Gündoğdu

Neslihan Ekinci

Nilüfer Kaleci

Murat Şeker

Yayımlanma Tarihi 24 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 13 Sayı: 3

Kaynak Göster

APA Gündoğdu, M. A., Ekinci, N., Kaleci, N., Şeker, M. (2018). BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ. Ecological Life Sciences, 13(3), 142-150.
AMA Gündoğdu MA, Ekinci N, Kaleci N, Şeker M. BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ. NWSA. Temmuz 2018;13(3):142-150.
Chicago Gündoğdu, Mehmet Ali, Neslihan Ekinci, Nilüfer Kaleci, ve Murat Şeker. “BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ”. Ecological Life Sciences 13, sy. 3 (Temmuz 2018): 142-50.
EndNote Gündoğdu MA, Ekinci N, Kaleci N, Şeker M (01 Temmuz 2018) BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ. Ecological Life Sciences 13 3 142–150.
IEEE M. A. Gündoğdu, N. Ekinci, N. Kaleci, ve M. Şeker, “BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ”, NWSA, c. 13, sy. 3, ss. 142–150, 2018.
ISNAD Gündoğdu, Mehmet Ali vd. “BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ”. Ecological Life Sciences 13/3 (Temmuz 2018), 142-150.
JAMA Gündoğdu MA, Ekinci N, Kaleci N, Şeker M. BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ. NWSA. 2018;13:142–150.
MLA Gündoğdu, Mehmet Ali vd. “BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ”. Ecological Life Sciences, c. 13, sy. 3, 2018, ss. 142-50.
Vancouver Gündoğdu MA, Ekinci N, Kaleci N, Şeker M. BAZI ÜMİTVAR NAR GENOTİPLERİNİN UÇUCU BİLEŞENLERİNİN BELİRLENMESİ. NWSA. 2018;13(3):142-50.