Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’nin Teknolojik Gelişiminin Ekonomik Büyümeye Etkisinin Modellenmesi ve Tahminlenmesi

Yıl 2025, Cilt: 20 Sayı: 3, 1044 - 1065

Öz

Bu çalışma temelde, ekonomi-teknoloji ilişkisinin incelenmesine dayanmaktadır. Bu kapsamda, 1996-2020 dönemine ait verilerle Türkiye’deki teknolojik yenilik ve gelişimin ekonomik büyümeye etkisinin değerlendirilmesi için, gayri safi yurtiçi hasıla (GSYİH) (bağımlı değişken) ile patent başvuru sayısı (yerleşik olan ve yerleşik olmayan) (PBS) ve bilimsel ve teknik dergilerde yayımlanan makale sayısı (BTM) (bağımsız değişenler) kullanılmıştır. İlgili veri seti Dünya Bankası resmi veri sitesinden elde edilmiştir. Çalışmada yöntem olarak, regresyon analizi ve Bayesyen regresyon analizi kullanılmıştır. Elde edilen bulgulara göre, teknolojik gelişim göstergelerinin ekonomik büyümeye etkisinin pozitif yönlü olduğu sonucuna varılmıştır.

Kaynakça

  • Ablay, M. V., & Doğan, A. (2024). The role of R&D expenditures, information and communication technology products exports and high-technology products exports on Turkey’s technological development. İktisadi İdari ve Siyasal Araştırmalar Dergisi, 9(24), 428-446. https://doi.org/10.25204/iktisad.1409735
  • Afkham, B. M., Knudsen, K., Rasmussen, A. K., & Tarvainen, T. (2024). A Bayesian approach for consistent reconstruction of inclusions. Inverse Problems, 40(4), 045004. https://doi.org/10.1088/1361-6420/ad2531
  • Algan, N., Manga, M. & Tekeoğlu, M. (2017). Teknolojik gelişme göstergeleri ile ekonomik büyüme arasındaki nedensellik ilişkisi: Türkiye örneği. International Conference on Eurasian Economies (pp. 332-338).
  • Alofaysan, H., Radulescu, M., Balsalobre-Lorente, D., & Mohammed, K. S. (2024). The effect of eco-friendly and financial technologies on renewable energy growth in emerging economies. Heliyon, 10(17), e36641. https://doi.org/10.1016/j.heliyon.2024.e36641
  • Altındağ, İ. (2015). Bayesci doğrusal olmayan yapısal eşitlik modeli [Yayımlanmamış doktora tezi]. Konya Selçuk Üniversitesi.
  • Amrani, A., Diepeveen, D., Murray, D., Jones, M. G., & Sohel, F. (2024). Multi-task learning model for agricultural pest detection from crop-plant imagery: A Bayesian approach. Computers and Electronics in Agriculture, 218, 108719. https://doi.org/10.1016/j.compag.2024.108719
  • Anser, M. K., Ahmad, M., Khan, M. A., Nassani, A. A., Haffar, M., & Zaman, K. (2024). The “IMPACT” of web of science coverage and scientific and technical journal articles on the world’s income: Scientific informatics and the knowledge-driven economy. Journal of the Knowledge Economy, 15(1), 3147-3173. https://doi.org/10.1007/s13132-023-01302-z
  • Bernardo, J. M., & Smith, A. F. M. (2000). Bayesian theory, John Wiley & Sons Inc.
  • Cavdar, S. C., & Aydin, A. D. (2015). An empirical analysis about technological development and innovation indicators. Procedia-Social and Behavioral Sciences, 195, 1486-1495.
  • Congdon, P. (2006), Bayesian statistical modelling (2nd ed.). John Wiley & Sons Inc.
  • Dam, M. M., & Yıldız, B. (2016). BRICS-TM ülkelerinde Ar-Ge ve inovasyonun ekonomik büyüme üzerine etkisi: Ekonometrik bir analiz. Akdeniz İ.İ.B.F. Dergisi, 16(33), 220-236.
  • Dhar, B. K., Shaturaev, J., Kurbonov, K., & Nazirjon, R. (2023). The causal nexus between innovation and economic growth: An OECD study. Social Science Quarterly, 104(4), 395-405. https://doi.org/10.1111/ssqu.13261
  • Ding, C., Liu, C., Zheng, C., & Li, F. (2022). Digital Economy, technological innovation and high-quality economic development: Based on spatial effect and mediation effect. Sustainability, 14(1), 216, https://doi.org/10.3390/su14010216.
  • Dobrzański, P., Bobowski, S., Chrysostome, E., Velinov, E., & Strouhal, J. (2021). Toward innovation-driven competitiveness across African countries: An analysis of efficiency of R&D expenditures. Journal of Competitiveness, 13(1), 5-22. http://dx.doi.org/10.7441/joc.2021.01.01
  • Doğan, A. (2022a). Ulusal ve uluslararası teknoloji haber web siteleri kullanılabilirliğinin içerik analizi ile karşılaştırmalı incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 19(3), 1481-1501. https://doi.org/10.33437/ksusbd.1193673
  • Doğan, A. (2022b). Yönetim bilişim sistemleri öğrencilerinin alana yönelik algılarının ölçümü üzerine uygulamalı bir araştırma. Journal of Politics, Economy and Management, 5(2), 110-129.
  • Doğan, A., Ablay, M. V., & Ağca, A. (2024). Investigation of the effects of technological development indicators on employment in Türkiye: A Bayesian approach. Sosyoekonomi, 32(62), 115-129. https://doi.org/10.17233/sosyoekonomi.2024.04.06
  • Dubois, D., & Prade, H., (1988). Possibility theory (E.F. Harding, Trans.;1st ed.). Plenum Press. (Original work published 1985)
  • Ekici, O. (2005). Bayesyen regresyon ve WinBUGS ile bir uygulama [Yayımlanmamış yüksek lisans tezi]. İstanbul Üniversitesi.
  • Goldstein, M., & Wooff, D. (2007). Bayes linear statistics: Theory and methods. John Wiley & Sons Inc.
  • Greenberg, E. (2013), Introduction to Bayesian econometrics (2nd ed.). Cambridge University Press.
  • Gündoğdu, S. (2016). Balıklarda büyüme parametrelerinin Bayesyen istatistiksel yöntemle tahmini [Yayımlanmamış doktora tezi]. Çukurova Üniversitesi.
  • Hahn, E. D. (2014), Bayesian methods for management and business: Pragmatic solutions for real problems. John Wiley & Sons Inc.
  • Jabeen, G., Wang, D., Işık, C., Alvarado, R., & Ongan, S. (2024). Role of energy utilization intensity, technical development, economic openness, and foreign tourism in environmental sustainability. Gondwana Research, 127, 100-115. https://doi.org/10.1016/j.gr.2023.03.001
  • Javaid, M., Haleem, A., Singh, R. P., & Sinha, A. K. (2024). Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), 100083. https://doi.org/10.1016/j.grets.2024.100083
  • Jiao, J., Song, J., & Ding, T. (2024). The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries. Energy, 295, 130997. https://doi.org/10.1016/j.energy.2024.130997
  • Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., & Chao Lee, T. (1991). The theory and practice of econometrics (2nd ed.). John Wiley & Sons Inc.
  • Judijanto, L., Manu, C. M. A., Sitopu, J. W., Mangelep, N. O., & Hardiansyah, A. (2024). The impact of mathematics in science and technology development. International Journal of Teaching and Learning, 2(2), 451-458.
  • Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative industrie 4.0. Final report of the Industrie 4.0 Working Group. Forschungsunion, Germany: Acatech.
  • Karadağ, Ö. (2011). Bayesci hiyerarşik modeller [Yayımlanmamış yüksek lisans tezi]. Hacettepe Üniversitesi.
  • Karakostas, E. (2022). What determines the medium and hich technology products exports: The case of Germany. International Journal of Advanced Economics, 4(3), 40-52. https://doi.org/10.51594/ijae.v4i3.316
  • Khan, T., & Emon, M. H. (2024). Exploring the potential of the blue economy: A systematic review of strategies for enhancing international business in Bangladesh in the context of indo-pacific region. Review of Business and Economics Studies, 12(2), 55-73. https://doi.org/10.26794/2308-944X-2024-12-2-55-73
  • Khan, Y., & Hassan, T. (2024). Promoting sustainable development: Evaluating the influence of natural resources, high-tech export and corruption on CO2 emissions in developing economies. Resources Policy, 88, 104511. https://doi.org/10.1016/j.resourpol.2023.104511
  • Kiani, T. A., Sabir, S., Qayyum, U., & Anjum, S. (2022). Estimating the effect of technological innovations on environmental degradation: Empirical evidence from selected ASEAN and SAARC countries. Environment, Development and Sustainability, 25, 6529-6550. https://doi.org/10.1007/s10668-022-02315-5
  • King, R., Morgan, B., Gimenez, O., & Brooks, S. (2009). Bayesian analysis for population ecology. Chapman and Hall/CRC Press.
  • Koehrsen, W., (2018). Introduction to Bayesian lineer regression, towards data science. https://towardsdatascience.com/introduction-to-Bayesian-linear-regression-e66e60791ea7 (Erişim tarihi: 20 Kasım 2024).
  • Kozlova, E., & Didenko, N. (2022). Impact of technological development factors on the quality of life: a comparative analysis of E7 and G7. International Journal for Quality Research, 16(2), 625–642. https://doi.org/10.24874/IJQR16.02-18
  • Kruschke, J. K, Aguinis, H., & Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15(4), 722–752. https://doi.org/10.1177/1094428112457829
  • Küçük, S. (2021). Endüstri 4.0 kavramının ve sürecinin bilinirliği üzerine Karaman organize sanayi bölgesinde bir araştırma [Yayımlanmamış yüksek lisans tezi]. Karamanoğlu Mehmet Bey Üniversitesi.
  • Lee, J.J., & Chu, C. T. (2012). Bayesian clinical trials in action. Statistics in Medicine, 31(25), 2955-2972. https://doi.org/10.1002/sim.5404
  • Liu, Y., Xie, Y., & Zhong, K. (2024). Impact of digital economy on urban sustainable development: Evidence from Chinese cities. Sustainable Development, 32(1), 307-324. https://doi.org/10.1002/sd.2656
  • Mccarthy, M. A. (2007). Bayesian methods for ecology. Cambridge University Press.
  • Mehmood, K., Iftikhar, Y., & Khan, A. N. (2022). Assessing eco technological innovation efciency using dea approach: Insights from the OECD countries. Clean Technologies and Environmental Policy, 24, 3273-3286. https://doi.org/10.1007/s10098-022-02378-y
  • Mora Apablaza, L., & Navarrete, C. (2022). Patents as indicators of the technological position of countries on a global level?. Scientometrics, 127, 1233–1246. https://doi.org/10.1007/s11192-022-04268-y
  • Panagiotidis, T., Papapanagiotou, G., & Stengos, T. (2024). A Bayesian approach for the determinants of bitcoin returns. International Review of Financial Analysis, 91, 103038. https://doi.org/10.1016/j.irfa.2023.103038
  • Petralia, S., Balland, P. A., & Morrison, A. (2017). Climbing the ladder of technological development. Research Policy, 46(5), 956–969. https://doi.org/10.1016/j.respol.2017.03.012
  • Richardson, S., & Best, N. (2003). Bayesian hierarchical models in ecological studies of health–environment effects. Environmetrics Society, 14(2), 129-147. https://doi.org/10.1002/env.571
  • Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64(1), 37-52.
  • Shah, N., Zehri, A. W., Saraih, U. N., Abdelwahed, N. A. A., & Soomro, B. A. (2024). The role of digital technology and digital innovation towards firm performance in a digital economy. Kybernetes, 53(2), 620-644. https://doi.org/10.1108/K-01-2023-0124
  • Shodiev, J., & Zarina, R. (2024). Digital economy as a factor of transformation of economic systems. International Journal of Recently Scientific Researcher's Theory, 2(1), 162-166.
  • Sinha, M., & Sengupta, P. P. (2022). FDI inflow, ICT expansion and economic growth: An empirical study on asia-pacific developing countries. Global Business Review 23(3), 804–821. https://doi.org/10.1177/0972150919873839
  • Sojoodi, S., & Baghbanpour, J. (2024). The relationship between high-tech industries exports and GDP growth in the selected developing and developed countries. Journal of the Knowledge Economy, 15(1), 2073-2095. https://doi.org/10.1007/s13132-023-01174-3
  • Sony, M. (2020). Pros and cons of implementing industry 4.0 for the organizations: A review and synthesis of evidence. Production & Manufacturing Research, 8(1), 244–272. https://doi.org/10.1080/21693277.2020.1781705
  • Şeker, A. (2019). Teknolojik gelişme ve yüksek teknoloji ihracatının ekonomik karmaşıklık endeksi üzerindeki etkisi: Türkiye örneği. Yönetim ve Ekonomi, 26(2), 377-395. https://doi.org/10.18657/yonveek.581397
  • Tekin, A., & Demirel, O. (2022). Bilimsel ve teknolojik performansın ekonomik büyümeye etkisi: OECD ülkeleri üzerine bir panel veri analizi. Sosyoekonomi, 30(51), 353-364. https://doi.org/10.17233/sosyoekonomi.2022.01.17 Temiz, R. (2017). Bulanık Bayesci hipotez testlerinin karşılaştırılması [Yayımlanmamış yüksek lisans tezi]. Ege Üniversitesi.
  • The World Bank. (2023, August). The World Bank Open Data. https://databank.worldbank.org/source/world-development-indicators
  • Tuskan, Y., & Erzin, Y. (2024). Application of Monte Carlo simulation technique for slopes stabilized with piles. Afyon Kocatepe University – Journal of Science and Engineering. 24(1), 117-125. https://doi.org/10.35414/akufemubid.1287644
  • Uyar, Ş. (2020). Teknoloji transferi ve ekonomik büyüme arasındaki ilişki: Türkiye örneği (1984-2018) [Yayımlanmamış yüksek lisans tezi]. Aydın Adnan Menderes Üniversitesi.
  • Westphal, L. E. (2002). Technology strategies for economic development in a fast changing global economy. Economics of Innovation and New Technology, 11(4-5), 275-320. https://doi.org/10.1080/10438590200000002
  • Wikipedia, (2025). An essay towards solving a problem in the doctrine of chances, https://en.wikipedia.org/wiki/An_Essay_Towards_Solving_a_Problem_in_the_Doctrine_of_Chances (Erişim tarihi: 20 Ocak 2025).
  • Yurtçu, M. (2018). Parametrik olmayan Bayes yöntemiyle ortak değişkenlere göre yapılan test eşitlemelerinin karşılaştırılması [Yayımlanmamış doktora tezi]. Hacettepe Üniversitesi.
  • Zainab, T., Wani, Z. A., & Bhat, M. A. (2018). Scientific research in relation to Gross Domestic Product (GDP) a comparative study of China and India. 5th International Symposium on Emerging Trends and Technologies in Libraries and Information Services (ETTLIS) (pp. 328-330). IEEE.
  • Zhang, W., & Yang, J. (2015). Forecasting natural gas consumption in China by Bayesian model averaging. Energy Reports, 1, 216–220. https://doi.org/10.1016/j.egyr.2015.11.001

Modeling and Forecasting the Impact of Türkiye's Technological Development on Economic Growth

Yıl 2025, Cilt: 20 Sayı: 3, 1044 - 1065

Öz

This study fundamentally examines the relationship between the economy and technology. In this context, the impact of technological innovation and development on economic growth in Türkiye was analyzed using data from the period 1996-2020. Gross Domestic Product (GDP) was employed as the dependent variable, while the number of patent applications (PA) and the number of articles published in scientific and technical journals (STJ) were used as independent variables Multiple linear regression and Bayesian regression analysis were used as the methodology. According to the findings, it was concluded that the impact of technological development indicators on economic growth is positive.

Kaynakça

  • Ablay, M. V., & Doğan, A. (2024). The role of R&D expenditures, information and communication technology products exports and high-technology products exports on Turkey’s technological development. İktisadi İdari ve Siyasal Araştırmalar Dergisi, 9(24), 428-446. https://doi.org/10.25204/iktisad.1409735
  • Afkham, B. M., Knudsen, K., Rasmussen, A. K., & Tarvainen, T. (2024). A Bayesian approach for consistent reconstruction of inclusions. Inverse Problems, 40(4), 045004. https://doi.org/10.1088/1361-6420/ad2531
  • Algan, N., Manga, M. & Tekeoğlu, M. (2017). Teknolojik gelişme göstergeleri ile ekonomik büyüme arasındaki nedensellik ilişkisi: Türkiye örneği. International Conference on Eurasian Economies (pp. 332-338).
  • Alofaysan, H., Radulescu, M., Balsalobre-Lorente, D., & Mohammed, K. S. (2024). The effect of eco-friendly and financial technologies on renewable energy growth in emerging economies. Heliyon, 10(17), e36641. https://doi.org/10.1016/j.heliyon.2024.e36641
  • Altındağ, İ. (2015). Bayesci doğrusal olmayan yapısal eşitlik modeli [Yayımlanmamış doktora tezi]. Konya Selçuk Üniversitesi.
  • Amrani, A., Diepeveen, D., Murray, D., Jones, M. G., & Sohel, F. (2024). Multi-task learning model for agricultural pest detection from crop-plant imagery: A Bayesian approach. Computers and Electronics in Agriculture, 218, 108719. https://doi.org/10.1016/j.compag.2024.108719
  • Anser, M. K., Ahmad, M., Khan, M. A., Nassani, A. A., Haffar, M., & Zaman, K. (2024). The “IMPACT” of web of science coverage and scientific and technical journal articles on the world’s income: Scientific informatics and the knowledge-driven economy. Journal of the Knowledge Economy, 15(1), 3147-3173. https://doi.org/10.1007/s13132-023-01302-z
  • Bernardo, J. M., & Smith, A. F. M. (2000). Bayesian theory, John Wiley & Sons Inc.
  • Cavdar, S. C., & Aydin, A. D. (2015). An empirical analysis about technological development and innovation indicators. Procedia-Social and Behavioral Sciences, 195, 1486-1495.
  • Congdon, P. (2006), Bayesian statistical modelling (2nd ed.). John Wiley & Sons Inc.
  • Dam, M. M., & Yıldız, B. (2016). BRICS-TM ülkelerinde Ar-Ge ve inovasyonun ekonomik büyüme üzerine etkisi: Ekonometrik bir analiz. Akdeniz İ.İ.B.F. Dergisi, 16(33), 220-236.
  • Dhar, B. K., Shaturaev, J., Kurbonov, K., & Nazirjon, R. (2023). The causal nexus between innovation and economic growth: An OECD study. Social Science Quarterly, 104(4), 395-405. https://doi.org/10.1111/ssqu.13261
  • Ding, C., Liu, C., Zheng, C., & Li, F. (2022). Digital Economy, technological innovation and high-quality economic development: Based on spatial effect and mediation effect. Sustainability, 14(1), 216, https://doi.org/10.3390/su14010216.
  • Dobrzański, P., Bobowski, S., Chrysostome, E., Velinov, E., & Strouhal, J. (2021). Toward innovation-driven competitiveness across African countries: An analysis of efficiency of R&D expenditures. Journal of Competitiveness, 13(1), 5-22. http://dx.doi.org/10.7441/joc.2021.01.01
  • Doğan, A. (2022a). Ulusal ve uluslararası teknoloji haber web siteleri kullanılabilirliğinin içerik analizi ile karşılaştırmalı incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 19(3), 1481-1501. https://doi.org/10.33437/ksusbd.1193673
  • Doğan, A. (2022b). Yönetim bilişim sistemleri öğrencilerinin alana yönelik algılarının ölçümü üzerine uygulamalı bir araştırma. Journal of Politics, Economy and Management, 5(2), 110-129.
  • Doğan, A., Ablay, M. V., & Ağca, A. (2024). Investigation of the effects of technological development indicators on employment in Türkiye: A Bayesian approach. Sosyoekonomi, 32(62), 115-129. https://doi.org/10.17233/sosyoekonomi.2024.04.06
  • Dubois, D., & Prade, H., (1988). Possibility theory (E.F. Harding, Trans.;1st ed.). Plenum Press. (Original work published 1985)
  • Ekici, O. (2005). Bayesyen regresyon ve WinBUGS ile bir uygulama [Yayımlanmamış yüksek lisans tezi]. İstanbul Üniversitesi.
  • Goldstein, M., & Wooff, D. (2007). Bayes linear statistics: Theory and methods. John Wiley & Sons Inc.
  • Greenberg, E. (2013), Introduction to Bayesian econometrics (2nd ed.). Cambridge University Press.
  • Gündoğdu, S. (2016). Balıklarda büyüme parametrelerinin Bayesyen istatistiksel yöntemle tahmini [Yayımlanmamış doktora tezi]. Çukurova Üniversitesi.
  • Hahn, E. D. (2014), Bayesian methods for management and business: Pragmatic solutions for real problems. John Wiley & Sons Inc.
  • Jabeen, G., Wang, D., Işık, C., Alvarado, R., & Ongan, S. (2024). Role of energy utilization intensity, technical development, economic openness, and foreign tourism in environmental sustainability. Gondwana Research, 127, 100-115. https://doi.org/10.1016/j.gr.2023.03.001
  • Javaid, M., Haleem, A., Singh, R. P., & Sinha, A. K. (2024). Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), 100083. https://doi.org/10.1016/j.grets.2024.100083
  • Jiao, J., Song, J., & Ding, T. (2024). The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries. Energy, 295, 130997. https://doi.org/10.1016/j.energy.2024.130997
  • Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., & Chao Lee, T. (1991). The theory and practice of econometrics (2nd ed.). John Wiley & Sons Inc.
  • Judijanto, L., Manu, C. M. A., Sitopu, J. W., Mangelep, N. O., & Hardiansyah, A. (2024). The impact of mathematics in science and technology development. International Journal of Teaching and Learning, 2(2), 451-458.
  • Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative industrie 4.0. Final report of the Industrie 4.0 Working Group. Forschungsunion, Germany: Acatech.
  • Karadağ, Ö. (2011). Bayesci hiyerarşik modeller [Yayımlanmamış yüksek lisans tezi]. Hacettepe Üniversitesi.
  • Karakostas, E. (2022). What determines the medium and hich technology products exports: The case of Germany. International Journal of Advanced Economics, 4(3), 40-52. https://doi.org/10.51594/ijae.v4i3.316
  • Khan, T., & Emon, M. H. (2024). Exploring the potential of the blue economy: A systematic review of strategies for enhancing international business in Bangladesh in the context of indo-pacific region. Review of Business and Economics Studies, 12(2), 55-73. https://doi.org/10.26794/2308-944X-2024-12-2-55-73
  • Khan, Y., & Hassan, T. (2024). Promoting sustainable development: Evaluating the influence of natural resources, high-tech export and corruption on CO2 emissions in developing economies. Resources Policy, 88, 104511. https://doi.org/10.1016/j.resourpol.2023.104511
  • Kiani, T. A., Sabir, S., Qayyum, U., & Anjum, S. (2022). Estimating the effect of technological innovations on environmental degradation: Empirical evidence from selected ASEAN and SAARC countries. Environment, Development and Sustainability, 25, 6529-6550. https://doi.org/10.1007/s10668-022-02315-5
  • King, R., Morgan, B., Gimenez, O., & Brooks, S. (2009). Bayesian analysis for population ecology. Chapman and Hall/CRC Press.
  • Koehrsen, W., (2018). Introduction to Bayesian lineer regression, towards data science. https://towardsdatascience.com/introduction-to-Bayesian-linear-regression-e66e60791ea7 (Erişim tarihi: 20 Kasım 2024).
  • Kozlova, E., & Didenko, N. (2022). Impact of technological development factors on the quality of life: a comparative analysis of E7 and G7. International Journal for Quality Research, 16(2), 625–642. https://doi.org/10.24874/IJQR16.02-18
  • Kruschke, J. K, Aguinis, H., & Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15(4), 722–752. https://doi.org/10.1177/1094428112457829
  • Küçük, S. (2021). Endüstri 4.0 kavramının ve sürecinin bilinirliği üzerine Karaman organize sanayi bölgesinde bir araştırma [Yayımlanmamış yüksek lisans tezi]. Karamanoğlu Mehmet Bey Üniversitesi.
  • Lee, J.J., & Chu, C. T. (2012). Bayesian clinical trials in action. Statistics in Medicine, 31(25), 2955-2972. https://doi.org/10.1002/sim.5404
  • Liu, Y., Xie, Y., & Zhong, K. (2024). Impact of digital economy on urban sustainable development: Evidence from Chinese cities. Sustainable Development, 32(1), 307-324. https://doi.org/10.1002/sd.2656
  • Mccarthy, M. A. (2007). Bayesian methods for ecology. Cambridge University Press.
  • Mehmood, K., Iftikhar, Y., & Khan, A. N. (2022). Assessing eco technological innovation efciency using dea approach: Insights from the OECD countries. Clean Technologies and Environmental Policy, 24, 3273-3286. https://doi.org/10.1007/s10098-022-02378-y
  • Mora Apablaza, L., & Navarrete, C. (2022). Patents as indicators of the technological position of countries on a global level?. Scientometrics, 127, 1233–1246. https://doi.org/10.1007/s11192-022-04268-y
  • Panagiotidis, T., Papapanagiotou, G., & Stengos, T. (2024). A Bayesian approach for the determinants of bitcoin returns. International Review of Financial Analysis, 91, 103038. https://doi.org/10.1016/j.irfa.2023.103038
  • Petralia, S., Balland, P. A., & Morrison, A. (2017). Climbing the ladder of technological development. Research Policy, 46(5), 956–969. https://doi.org/10.1016/j.respol.2017.03.012
  • Richardson, S., & Best, N. (2003). Bayesian hierarchical models in ecological studies of health–environment effects. Environmetrics Society, 14(2), 129-147. https://doi.org/10.1002/env.571
  • Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64(1), 37-52.
  • Shah, N., Zehri, A. W., Saraih, U. N., Abdelwahed, N. A. A., & Soomro, B. A. (2024). The role of digital technology and digital innovation towards firm performance in a digital economy. Kybernetes, 53(2), 620-644. https://doi.org/10.1108/K-01-2023-0124
  • Shodiev, J., & Zarina, R. (2024). Digital economy as a factor of transformation of economic systems. International Journal of Recently Scientific Researcher's Theory, 2(1), 162-166.
  • Sinha, M., & Sengupta, P. P. (2022). FDI inflow, ICT expansion and economic growth: An empirical study on asia-pacific developing countries. Global Business Review 23(3), 804–821. https://doi.org/10.1177/0972150919873839
  • Sojoodi, S., & Baghbanpour, J. (2024). The relationship between high-tech industries exports and GDP growth in the selected developing and developed countries. Journal of the Knowledge Economy, 15(1), 2073-2095. https://doi.org/10.1007/s13132-023-01174-3
  • Sony, M. (2020). Pros and cons of implementing industry 4.0 for the organizations: A review and synthesis of evidence. Production & Manufacturing Research, 8(1), 244–272. https://doi.org/10.1080/21693277.2020.1781705
  • Şeker, A. (2019). Teknolojik gelişme ve yüksek teknoloji ihracatının ekonomik karmaşıklık endeksi üzerindeki etkisi: Türkiye örneği. Yönetim ve Ekonomi, 26(2), 377-395. https://doi.org/10.18657/yonveek.581397
  • Tekin, A., & Demirel, O. (2022). Bilimsel ve teknolojik performansın ekonomik büyümeye etkisi: OECD ülkeleri üzerine bir panel veri analizi. Sosyoekonomi, 30(51), 353-364. https://doi.org/10.17233/sosyoekonomi.2022.01.17 Temiz, R. (2017). Bulanık Bayesci hipotez testlerinin karşılaştırılması [Yayımlanmamış yüksek lisans tezi]. Ege Üniversitesi.
  • The World Bank. (2023, August). The World Bank Open Data. https://databank.worldbank.org/source/world-development-indicators
  • Tuskan, Y., & Erzin, Y. (2024). Application of Monte Carlo simulation technique for slopes stabilized with piles. Afyon Kocatepe University – Journal of Science and Engineering. 24(1), 117-125. https://doi.org/10.35414/akufemubid.1287644
  • Uyar, Ş. (2020). Teknoloji transferi ve ekonomik büyüme arasındaki ilişki: Türkiye örneği (1984-2018) [Yayımlanmamış yüksek lisans tezi]. Aydın Adnan Menderes Üniversitesi.
  • Westphal, L. E. (2002). Technology strategies for economic development in a fast changing global economy. Economics of Innovation and New Technology, 11(4-5), 275-320. https://doi.org/10.1080/10438590200000002
  • Wikipedia, (2025). An essay towards solving a problem in the doctrine of chances, https://en.wikipedia.org/wiki/An_Essay_Towards_Solving_a_Problem_in_the_Doctrine_of_Chances (Erişim tarihi: 20 Ocak 2025).
  • Yurtçu, M. (2018). Parametrik olmayan Bayes yöntemiyle ortak değişkenlere göre yapılan test eşitlemelerinin karşılaştırılması [Yayımlanmamış doktora tezi]. Hacettepe Üniversitesi.
  • Zainab, T., Wani, Z. A., & Bhat, M. A. (2018). Scientific research in relation to Gross Domestic Product (GDP) a comparative study of China and India. 5th International Symposium on Emerging Trends and Technologies in Libraries and Information Services (ETTLIS) (pp. 328-330). IEEE.
  • Zhang, W., & Yang, J. (2015). Forecasting natural gas consumption in China by Bayesian model averaging. Energy Reports, 1, 216–220. https://doi.org/10.1016/j.egyr.2015.11.001
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekonometrik ve İstatistiksel Yöntemler, Ekonomik Modeller ve Öngörü, Kamu Yönetimi
Bölüm Makaleler
Yazarlar

Mulla Veli Ablay 0000-0002-4027-3949

Ahmet Doğan 0000-0002-7116-3558

Yayımlanma Tarihi
Gönderilme Tarihi 21 Kasım 2024
Kabul Tarihi 10 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 20 Sayı: 3

Kaynak Göster

APA Ablay, M. V., & Doğan, A. (t.y.). Türkiye’nin Teknolojik Gelişiminin Ekonomik Büyümeye Etkisinin Modellenmesi ve Tahminlenmesi. Eskişehir Osmangazi Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 20(3), 1044-1065.