Doymuş kumlu zeminler, deprem yükleri altında sıvılaşarak serbest saha ve yapılar üzerinde zararlı etkilere neden olabilmektedir. Yapıların güvenliğini ve kullanılabilirliğini sağlamak için zemin sıvılaşmasına bağlı hasarların azaltılması veya önlenmesi gerekmektedir. Son yıllarda ortaya çıkmış olan Kısmi Doygunluğa İndirgeme (IPS) tekniği sıvılaşmanın etkilerini azaltmada kullanılabilecek yeni bir yöntemdir. Bu çalışmada, iki farklı IPS yöntemi kullanılarak kısmi doygun hale getirilmiş kum modelleri üzerinde laboratuvar testleri gerçekleştirilmiş ve özellikle zemin içerisindeki boşluklarda suni olarak oluşturulmuş olan hava/gaz kabarcıklarının dağılımı incelenmiştir. Bu amaç doğrultusunda, hava enjekte ederek veya kimyasal madde kullanarak şeffaf pleksiglas kutu içinde kısmi doygun gevşek kum modelleri hazırlanmıştır. Farklı test aşamalarında kaydedilmiş dijital resimler yardımı ile gaz/hava kabarcıklarının zemin içindeki dağılımı gözlemlenmiştir. Ayrıca, kum modellerinin farklı noktalarına yerleştirilen toprak nem ölçüm sensörleri ile doygunluk derecesinin zamana bağlı değişimi tespit edilmiştir. Test verilerinin kapsamlı analizleri, kullanılan kimyasal maddenin su içinde reaksiyona girmesi ile zemin içinde oksijen kabarcıkları oluşturduğunu ve bu kabarcıkların yeterince üniform olarak dağıldığını göstermiştir. Aynı zamanda bu yöntem ile istenilen doygunluk derecelerinde kum modelleri hazırlanabilmiştir. Buna karşılık, zemine enjekte edilen havanın sınırlı bir akış yolunu takip ettiği gözlemlenmiş ve hava enjeksiyon tekniğinin yerçekimi etkisi altında üniform ve düşük doygunluk derecesine (%90 altı) sahip kısmi doygun kum modellerinin hazırlanmasında nispeten daha az başarılı olduğu görülmüştür.
Bertalot, D., Brennan, A. J. & Villalobos, F. A. (2013). Influence of bearing pressure on liquefaction-induced settlement of shallow foundations. Géotechnique, 63(5), 391-399. doi: https://doi.org/10.1680/geot.11.P.040
Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T. & Taylor, C. A. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618-1628. doi: https://doi.org/10.1016/j.soildyn.2011.06.006
Bray, J., Sancio, R., Durgunoglu, T., Onalp, A., Youd, T., Stewart, J., Seed, R., Cetin, O., Bol, E., Baturay, M., Christensen, C. & Karadayilar, T. (2004). Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685. doi: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673)
Choi, S. G., Chang, I., Lee, M., Lee, J. H., Han, J. T. & Kwon, T. H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Construction and Building Materials, 246(June), 118415. doi: https://doi.org/10.1016/j.conbuildmat.2020.118415
Cubrinovski, M., Bray, J. D., Taylor, M., Giorgini, S., Bradley, B., Wotherspoon, L. & Zupan, J. (2011). Soil liquefaction effects in the Central Business District during the February 2011 Christchurch Earthquake. Seismological Research Letters, 82(6), 893-904. doi: https://doi.org/10.1785/gssrl.82.6.893
DeJong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. doi: https://doi.org/10.1016/j.ecoleng.2008.12.029
Elgamal, A.-W., Zeghal, M., and Parra, E. (1996). Liquefaction of reclaimed island in Kobe, Japan. Journal of Geotechnical Engineering, 122(1):39-49. doi: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(39)
Eseller-Bayat, E. & Gulen, D. B. (2020). Undrained dynamic response of partially saturated sands tested in a DSS-C device. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020118. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002361
Eseller-Bayat, E., Yegian, M. K., Alshawabkeh, A. & Gokyer, S. (2013). Liquefaction response of partially saturated sands. I: Experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 863-871. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815
Gallagher, P. M. & Mitchell, J. K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthquake Engineering 22(9), 1017-1026. doi: https://doi.org/10.1016/S0267-7261(02)00126-4
Gallagher, P. M., Pamuk, A. & Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40. doi: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)
He, J., Chu, J. & Ivanov, V. (2013). Mitigation of liquefaction of saturated sand using biogas. Géotechnique, 63(4), 267-275. doi: https://doi.org/10.1680/geot.SIP13.P.004
Heron, C. M. (2013). The dynamic soil structure interaction of shallow foundations on dry sand beds (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.11754
Hu, X., Li, D., Peng, E., Hou, Z., Sheng, Y. & Chou, Y. (2020). Long-term sustainability of biogas bubbles in sand. Scientific Reports, 10(1), 12680. doi: https://doi.org/10.1038/s41598-020-69324-0
Marasini, N. P. & Okamura, M. (2015). Air injection to mitigate liquefaction under light structures. International Journal of Physical Modelling in Geotechnics, 15(3), 129-140. doi: https://doi.org/10.1680/jphmg.14.00005
Mitchell, J. K., Baxter, C. D. P. & Munson, T. C. (1995). Performance of improved ground during earthquakes. Soil Improvement for Earthquake Hazard Mitigation, Geotechnical Special Publication, 49, 1-36. Retrieved from http://worldcat.org/isbn/0784401233
Montoya, B. M., DeJong, J. T. & Boulanger, R. W. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique, 63(4), 302-312. doi: https://doi.org/10.1680/geot.SIP13.P.019
Mousavi, S. & Ghayoomi, M. (2021). Liquefaction Mitigation of Sands with Nonplastic Fines via Microbial-Induced Partial Saturation. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020156. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002444
Nababan, F. R. P. (2015). Development and evaluation of induced partial saturation (IPS), delivery method and its implementation in large laboratory specimens and in the field (Doctoral Dissertation), Northeastern University, Boston. Retrieved from http://hdl.handle.net/2047/D20200382
O’Donnell, S. T., Rittmann, B. E. & Kavazanjian, E. (2017). MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. Journal of Geotechnical and Geoenvironmental Engineering, 143(12), 04017094. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818
Okamura, M. & Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 703–708. doi: https://doi.org/10.3208/sandf.46.695
Okamura, M., and Tomida, Y. (2015). Full scale test on cost effective liquefaction countermeasure for highway embankment. In Proceedings of the 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions, IIT Madras, Chennai, India (Indian Geotechnical Society, Chennai Chapter, Vol. 1, pp. 208-212).
Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., Yasuhara, H. & Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483
Rajendran, K., Rajendran, C. P., Thakkar, M., & Tuttle, M. P. (2001). The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Current Science, 80(11), 1397–1405. Retrieved from http://www.jstor.org/stable/24104957
Seed, R. B., Cetin, K, O., Ress, M. O. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E. & Faris, A. (2003). Recent advances in soil liquefaction engineering: A unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar (pp. 301-371).
Yasuhara, H., Kochi, M. & Okamura, M. (2008). Experiments and predictions of soil desaturation by air injection technique and the implications mediated by multiphase flow simulation. Soils and Foundations, 48(6), 791-804. doi: https://doi.org/10.3208/sandf.48.791
Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. & Ali, S. (2007). Induced partial saturation (IPS) for liquefaction mitigation: Experimental investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372)
Zamani, A., Xiao, P., Baumer, T. & Carey, T. J. (2021). Mitigation of liquefaction triggering and foundation settlement by MICP treatment. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 04021099. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596
Zeybek, A. & Madabhushi, S. P. G. (2017a). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339-356. doi: https://doi.org/10.1007/s10518-016-9968-6
Zeybek, A. & Madabhushi, S. P. G. (2017b). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dynamics and Earthquake Engineering, 97, 266-276. doi: https://doi.org/10.1016/j.soildyn.2017.03.018
Zeybek, A. & Madabhushi, S. P. G. (2017c). Durability of partial saturation to counteract liquefaction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 102-111. doi: https://doi.org/10.1680/jgrim.16.00025
Zeybek, A. & Madabhushi, S. P. G. (2018). Physical modelling of air injection to remediate liquefaction. International Journal of Physical Modelling in Geotechnics, 18(2), 68-80. doi: https://doi.org/10.1680/jphmg.16.00049
Zeybek, A. & Madabhushi, S. P. G. (2019). Simplified procedure for prediction of earthquake-induced settlements in partially saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019100. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002173
Zeybek, A. (2017). Air injection technique to mitigate liquefaction beneath shallow foundations (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.14729
Zeybek, A. (2022a). Suggested method of specimen preparation for triaxial tests on partially saturated sand. Geotechnical Testing Journal, 45(2). doi: https://doi.org/10.1520/GTJ20210168
Zeybek, A. (2022b). Shaking table tests on seismic performance of shallow foundations resting on partially saturated sands. Arabian Journal of Geosciences, 15(8), 774. doi: https://doi.org/10.1007/s12517-022-10032-6
EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES
Saturated deposits of sandy soils may liquefy during an earthquake event, causing detrimental effects on the site and structures. Mitigation of liquefaction-induced damage is of the essence when the structures are expected to exceed the acceptable limits of safety and serviceability. Induced Partial Saturation (IPS) has been recently proposed as a novel liquefaction countermeasure. In the present study, several laboratory tests were conducted on partially saturated sand models to offer insights into two IPS methods, paying more attention to the distribution of air/gas bubbles entrapped in pore spaces. For this purpose, loose deposits of partially saturated sand were prepared in transparent plexiglass boxes either injecting air or using a chemical substance. Digital images were recorded at different stages of the tests, which provided an opportunity to visualize the distribution of gas/air bubbles. Furthermore, moisture sensors were placed at different locations of sand models, allowing to capture the variation of the degree of saturation with time. Comprehensive analyses of the test data suggested that oxygen bubbles were generated through a reaction between water and chemical substance, and the distribution of oxygen bubbles was sufficiently uniform across the sand models. This method also allowed the preparation of sand models at the desired degrees of saturation. On the contrary, at 1-g injected air was observed to flow through a path of less resistance, and this technique was comparatively less successful in preparing sand models with uniformly distributed air bubbles and at lower degrees of saturation (i.e., below 90%).
Bertalot, D., Brennan, A. J. & Villalobos, F. A. (2013). Influence of bearing pressure on liquefaction-induced settlement of shallow foundations. Géotechnique, 63(5), 391-399. doi: https://doi.org/10.1680/geot.11.P.040
Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T. & Taylor, C. A. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618-1628. doi: https://doi.org/10.1016/j.soildyn.2011.06.006
Bray, J., Sancio, R., Durgunoglu, T., Onalp, A., Youd, T., Stewart, J., Seed, R., Cetin, O., Bol, E., Baturay, M., Christensen, C. & Karadayilar, T. (2004). Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685. doi: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673)
Choi, S. G., Chang, I., Lee, M., Lee, J. H., Han, J. T. & Kwon, T. H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Construction and Building Materials, 246(June), 118415. doi: https://doi.org/10.1016/j.conbuildmat.2020.118415
Cubrinovski, M., Bray, J. D., Taylor, M., Giorgini, S., Bradley, B., Wotherspoon, L. & Zupan, J. (2011). Soil liquefaction effects in the Central Business District during the February 2011 Christchurch Earthquake. Seismological Research Letters, 82(6), 893-904. doi: https://doi.org/10.1785/gssrl.82.6.893
DeJong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. doi: https://doi.org/10.1016/j.ecoleng.2008.12.029
Elgamal, A.-W., Zeghal, M., and Parra, E. (1996). Liquefaction of reclaimed island in Kobe, Japan. Journal of Geotechnical Engineering, 122(1):39-49. doi: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(39)
Eseller-Bayat, E. & Gulen, D. B. (2020). Undrained dynamic response of partially saturated sands tested in a DSS-C device. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020118. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002361
Eseller-Bayat, E., Yegian, M. K., Alshawabkeh, A. & Gokyer, S. (2013). Liquefaction response of partially saturated sands. I: Experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 863-871. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815
Gallagher, P. M. & Mitchell, J. K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthquake Engineering 22(9), 1017-1026. doi: https://doi.org/10.1016/S0267-7261(02)00126-4
Gallagher, P. M., Pamuk, A. & Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40. doi: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)
He, J., Chu, J. & Ivanov, V. (2013). Mitigation of liquefaction of saturated sand using biogas. Géotechnique, 63(4), 267-275. doi: https://doi.org/10.1680/geot.SIP13.P.004
Heron, C. M. (2013). The dynamic soil structure interaction of shallow foundations on dry sand beds (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.11754
Hu, X., Li, D., Peng, E., Hou, Z., Sheng, Y. & Chou, Y. (2020). Long-term sustainability of biogas bubbles in sand. Scientific Reports, 10(1), 12680. doi: https://doi.org/10.1038/s41598-020-69324-0
Marasini, N. P. & Okamura, M. (2015). Air injection to mitigate liquefaction under light structures. International Journal of Physical Modelling in Geotechnics, 15(3), 129-140. doi: https://doi.org/10.1680/jphmg.14.00005
Mitchell, J. K., Baxter, C. D. P. & Munson, T. C. (1995). Performance of improved ground during earthquakes. Soil Improvement for Earthquake Hazard Mitigation, Geotechnical Special Publication, 49, 1-36. Retrieved from http://worldcat.org/isbn/0784401233
Montoya, B. M., DeJong, J. T. & Boulanger, R. W. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique, 63(4), 302-312. doi: https://doi.org/10.1680/geot.SIP13.P.019
Mousavi, S. & Ghayoomi, M. (2021). Liquefaction Mitigation of Sands with Nonplastic Fines via Microbial-Induced Partial Saturation. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020156. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002444
Nababan, F. R. P. (2015). Development and evaluation of induced partial saturation (IPS), delivery method and its implementation in large laboratory specimens and in the field (Doctoral Dissertation), Northeastern University, Boston. Retrieved from http://hdl.handle.net/2047/D20200382
O’Donnell, S. T., Rittmann, B. E. & Kavazanjian, E. (2017). MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. Journal of Geotechnical and Geoenvironmental Engineering, 143(12), 04017094. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818
Okamura, M. & Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 703–708. doi: https://doi.org/10.3208/sandf.46.695
Okamura, M., and Tomida, Y. (2015). Full scale test on cost effective liquefaction countermeasure for highway embankment. In Proceedings of the 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions, IIT Madras, Chennai, India (Indian Geotechnical Society, Chennai Chapter, Vol. 1, pp. 208-212).
Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., Yasuhara, H. & Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483
Rajendran, K., Rajendran, C. P., Thakkar, M., & Tuttle, M. P. (2001). The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Current Science, 80(11), 1397–1405. Retrieved from http://www.jstor.org/stable/24104957
Seed, R. B., Cetin, K, O., Ress, M. O. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E. & Faris, A. (2003). Recent advances in soil liquefaction engineering: A unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar (pp. 301-371).
Yasuhara, H., Kochi, M. & Okamura, M. (2008). Experiments and predictions of soil desaturation by air injection technique and the implications mediated by multiphase flow simulation. Soils and Foundations, 48(6), 791-804. doi: https://doi.org/10.3208/sandf.48.791
Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. & Ali, S. (2007). Induced partial saturation (IPS) for liquefaction mitigation: Experimental investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372)
Zamani, A., Xiao, P., Baumer, T. & Carey, T. J. (2021). Mitigation of liquefaction triggering and foundation settlement by MICP treatment. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 04021099. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596
Zeybek, A. & Madabhushi, S. P. G. (2017a). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339-356. doi: https://doi.org/10.1007/s10518-016-9968-6
Zeybek, A. & Madabhushi, S. P. G. (2017b). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dynamics and Earthquake Engineering, 97, 266-276. doi: https://doi.org/10.1016/j.soildyn.2017.03.018
Zeybek, A. & Madabhushi, S. P. G. (2017c). Durability of partial saturation to counteract liquefaction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 102-111. doi: https://doi.org/10.1680/jgrim.16.00025
Zeybek, A. & Madabhushi, S. P. G. (2018). Physical modelling of air injection to remediate liquefaction. International Journal of Physical Modelling in Geotechnics, 18(2), 68-80. doi: https://doi.org/10.1680/jphmg.16.00049
Zeybek, A. & Madabhushi, S. P. G. (2019). Simplified procedure for prediction of earthquake-induced settlements in partially saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019100. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002173
Zeybek, A. (2017). Air injection technique to mitigate liquefaction beneath shallow foundations (Doctoral Dissertation), University of Cambridge, Cambridge, UK. Retrieved from https://doi.org/10.17863/CAM.14729
Zeybek, A. (2022a). Suggested method of specimen preparation for triaxial tests on partially saturated sand. Geotechnical Testing Journal, 45(2). doi: https://doi.org/10.1520/GTJ20210168
Zeybek, A. (2022b). Shaking table tests on seismic performance of shallow foundations resting on partially saturated sands. Arabian Journal of Geosciences, 15(8), 774. doi: https://doi.org/10.1007/s12517-022-10032-6
Zeybek, A. (2022). EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(3), 309-317. https://doi.org/10.31796/ogummf.1062953
AMA
Zeybek A. EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. ESOGÜ Müh Mim Fak Derg. Aralık 2022;30(3):309-317. doi:10.31796/ogummf.1062953
Chicago
Zeybek, Abdulhakim. “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, sy. 3 (Aralık 2022): 309-17. https://doi.org/10.31796/ogummf.1062953.
EndNote
Zeybek A (01 Aralık 2022) EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 3 309–317.
IEEE
A. Zeybek, “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”, ESOGÜ Müh Mim Fak Derg, c. 30, sy. 3, ss. 309–317, 2022, doi: 10.31796/ogummf.1062953.
ISNAD
Zeybek, Abdulhakim. “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/3 (Aralık 2022), 309-317. https://doi.org/10.31796/ogummf.1062953.
JAMA
Zeybek A. EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. ESOGÜ Müh Mim Fak Derg. 2022;30:309–317.
MLA
Zeybek, Abdulhakim. “EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 30, sy. 3, 2022, ss. 309-17, doi:10.31796/ogummf.1062953.
Vancouver
Zeybek A. EXPERIMENTAL INSIGHTS INTO INDUCED PARTIAL SATURATION METHODS DEVELOPED FOR LIQUEFACTION MITIGATION: DISTRIBUTION OF GAS BUBBLES. ESOGÜ Müh Mim Fak Derg. 2022;30(3):309-17.