Araştırma Makalesi
BibTex RIS Kaynak Göster

LabVIEW BASED GUI DESIGN FOR INDUCTION MOTOR BEARING FAULT ANALYSIS

Yıl 2025, Cilt: 33 Sayı: 3, 2032 - 2041, 19.12.2025
https://doi.org/10.31796/ogummf.1703595

Öz

Early diagnosis of bearing faults in induction motors is of critical importance for industrial process efficiency, safety, and cost-effective maintenance. In this study, a Convolutional Neural Network (CNN) model based on multi-sensor data fusion is proposed for the detection and classification of induction motor bearing faults. Within the scope of the study, three-axis vibration, three-phase current, and torque signals obtained from the experimental setup were processed and converted into spectrogram images to serve as input data for the deep learning model. To enhance the applicability of the system, Graphical User Interfaces (GUIs) featuring integration with LabVIEW and Python were developed. Through these interfaces, data acquisition, preprocessing, model training, and testing processes can be performed. Experimental results demonstrated that using the data fusion approach instead of single sensor data significantly improved classification performance. While the validation accuracy rates obtained with current and vibration data individually were 83.91% and 98.10% respectively, the fusion model created by combining vibration, current, and torque data reached an accuracy rate of 99.48%. The findings reveal that the proposed method can detect faults with high precision in industrial environments, offering an effective solution for predictive maintenance applications.

Proje Numarası

118C252

Kaynakça

  • Cengiz, E., Yaylak, F. ve Gülbandilar, E. (2022). Investigation of polyps in endoscopy images by using deep learning algorithm. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(3), 441-453. doi: https://doi.org/10.31796/ogummf.1122707
  • Chavhan, K. B. ve Ugale, R. T. (2016). Automated test bench for an induction motor using LabVIEW, 1-6. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India: IEEE. doi: https://doi.org/10.1109/ICPEICES.2016.7853547
  • Demirci, D., Saraçbaşi, E., Emrah, E., Uzun, İ., Genç, Y. ve Özkan, K. (2022). Domates hastalığı tahmini için gerçek zamanlı uygulama. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(1), 90-95. doi: https://doi.org/10.31796/ogummf.969487
  • Dias, C. G. ve Silva, L. C. da. (2022). Induction motor speed estimation based on airgap flux measurement using hilbert transform and fast fourier transform. IEEE Sensors Journal, 22(13), 12690-12699. doi: https://doi.org/10.1109/JSEN.2022.3176085
  • Dündar, D. R., Sarıçiçek, İ., Çinar, E. ve Yazıcı, A. (2021). Kestirimci bakımda makine öğrenmesi: Literatür araştırması. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29(2), 256-276. doi: https://doi.org/10.31796/ogummf.873963
  • El Idrissi, A., Derouich, A., Mahfoud, S., El Ouanjli, N., Chantoufi, A., Al-Sumaiti, A. S. ve Mossa, M. A. (2022). Bearing fault diagnosis for an induction motor controlled by an artificial neural network—direct torque control using the hilbert transform. Mathematics, 10(22), 4258. doi: https://doi.org/10.3390/math10224258
  • Ewert, P., Kowalski, C. T. ve Orlowska-Kowalska, T. (2020). Low-cost monitoring and diagnosis system for rolling bearing faults of the induction motor based on neural network approach. Electronics, 9(9), 1334. doi: https://doi.org/10.3390/electronics9091334
  • Han, J.-H., Choi, D.-J., Hong, S.-K. ve Kim, H.-S. (2019). Motor fault diagnosis using CNN based deep learning algorithm considering motor rotating speed. 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), 440-445. 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), sunulmuş bildiri, Tokyo, Japan: IEEE. doi: https://doi.org/10.1109/IEA.2019.8714900
  • Li, G., Deng, C., Wu, J., Chen, Z. ve Xu, X. (2020). Rolling bearing fault diagnosis based on wavelet packet transform and convolutional neural network. Applied Sciences, 10(3), 770. doi: https://doi.org/10.3390/app10030770
  • Liu, D., Cheng, W. ve Wen, W. (2020). Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method. Procedia Manufacturing, 49, 166-172. doi: https://doi.org/10.1016/j.promfg.2020.07.014
  • Mahela, O. P., Sharma, J., Kumar, B., Khan, B. ve Alhelou, H. H. (2020). An algorithm for the protection of distribution feeders using the stockwell and hilbert transforms supported features. CSEE Journal of Power and Energy Systems, 7(6), 1278-1288. doi: https://doi.org/10.17775/CSEEJPES.2020.00170
  • Mekala, N., Jayabharathi, T., Rajkumar, T. ve Darshini, M. P., (2022). Fault analysis of induction motor using LabVIEW. International Journal of Engineering Applied Sciences and Technology, 7(8), 146-150. doi: https://doi.org/10.33564/IJEAST.2022.v07i08.017
  • Pavithra, G. ve Rao, V. V. (2018). Remote monitoring and control of VFD fed three phase induction motor with PLC and LabVIEW software, 329-335. 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), sunulmuş bildiri, Palladam, India: IEEE. doi: https://doi.org/10.1109/I-SMAC.2018.8653657
  • Pietrzak, P. ve Wolkiewicz, M. (2022). Machine learning-based stator current data-driven PMSM stator winding fault diagnosis. Sensors, 22(24), 9668. doi: https://doi.org/10.3390/s22249668
  • Ramu, S. K., Irudayaraj, G. C. R., Subramani, S. ve Subramaniam, U. (2020). Broken rotor bar fault detection using hilbert transform and neural networks applied to direct torque control of induction motor drive. IET Power Electronics, 13(15), 3328-3338. doi: https://doi.org/10.1049/iet-pel.2019.1543
  • Sasireka, M., Vidhyalakshmi, P., Rupasri, M., Sanjai, S. ve Sanjana, G. (2023). Fault identification in induction motor using LabView, 123-128. 2023 Third International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India: IEEE. doi: https://doi.org/10.1109/ICUIS60567.2023.00029
  • Sengamalai, U., Anbazhagan, G., Thamizh Thentral, T. M., Vishnuram, P., Khurshaid, T. ve Kamel, S. (2022). Three phase induction motor drive: a systematic review on dynamic modeling, parameter estimation, and control schemes. Energies, 15(21), 8260. doi: https://doi.org/10.3390/en15218260
  • Tyagi, S. ve Panigrahi, S. K. (2017). A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with artificial neural networks. Journal of Applied and Computational Mechanics, 3(1). doi: https://doi.org/10.22055/jacm.2017.21576.1108
  • Wang, X., Mao, D. ve Li, X. (2021). Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement, 173, 108518. doi: https://doi.org/10.1016/j.measurement.2020.108518
  • Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P. ve Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237. doi: https://doi.org/10.1016/j.ymssp.2018.05.050

ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI

Yıl 2025, Cilt: 33 Sayı: 3, 2032 - 2041, 19.12.2025
https://doi.org/10.31796/ogummf.1703595

Öz

Asenkron motorlarda meydana gelen rulman arızalarının erken teşhisi, endüstriyel süreçlerin verimliliği, güvenliği ve bakım maliyetlerinin düşürülmesi açısından kritik öneme sahiptir. Bu çalışmada, asenkron motor rulman arızalarının tespiti ve sınıflandırılması amacıyla çoklu sensör veri füzyonuna dayalı bir Evrişimli Sinir Ağı (CNN) modeli önerilmiştir. Çalışma kapsamında deneysel düzenekten elde edilen üç eksenli titreşim, üç fazlı akım ve tork sinyalleri işlenerek spektrogram görüntülerine dönüştürülmüş ve derin öğrenme modeline giriş verisi olarak sunulmuştur. Sistemin uygulanabilirliğini artırmak adına, LabVIEW ve Python entegrasyonuna sahip Grafiksel Kullanıcı Arayüzleri (GUI) geliştirilmiştir. Bu arayüzler sayesinde veri toplama, ön işleme, model eğitimi ve test işlemleri gerçekleştirilebilmektedir. Deneysel sonuçlar, tekil sensör verileri yerine veri füzyonu yaklaşımının kullanılmasının sınıflandırma başarısını belirgin şekilde artırdığını göstermiştir. Tek başına akım ve titreşim verileriyle elde edilen doğrulama doğrulukları sırasıyla %83.91 ve %98.10 iken; titreşim, akım ve tork verilerinin birleştirilmesiyle oluşturulan füzyon modeli %99.48 doğruluk oranına ulaşmıştır. Elde edilen bulgular, önerilen yöntemin endüstriyel ortamlarda arızaları yüksek hassasiyetle tespit edebileceğini ve kestirimci bakım uygulamaları için etkin bir çözüm sunabileceğini ortaya koymaktadır.

Etik Beyan

Bu çalışma kapsamında yapılan testler ve sonuçların sunulmasında araştırma ve yayın etiğine uyulmuştur.

Destekleyen Kurum

Türkiye Teknik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

118C252

Teşekkür

Bu araştırmada kullanılan veriler, Türkiye Teknik Araştırma Kurumu (TÜBİTAK) tarafından 118C252 hibe numaralı bir araştırma projesi kapsamında toplanmıştır.

Kaynakça

  • Cengiz, E., Yaylak, F. ve Gülbandilar, E. (2022). Investigation of polyps in endoscopy images by using deep learning algorithm. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(3), 441-453. doi: https://doi.org/10.31796/ogummf.1122707
  • Chavhan, K. B. ve Ugale, R. T. (2016). Automated test bench for an induction motor using LabVIEW, 1-6. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India: IEEE. doi: https://doi.org/10.1109/ICPEICES.2016.7853547
  • Demirci, D., Saraçbaşi, E., Emrah, E., Uzun, İ., Genç, Y. ve Özkan, K. (2022). Domates hastalığı tahmini için gerçek zamanlı uygulama. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(1), 90-95. doi: https://doi.org/10.31796/ogummf.969487
  • Dias, C. G. ve Silva, L. C. da. (2022). Induction motor speed estimation based on airgap flux measurement using hilbert transform and fast fourier transform. IEEE Sensors Journal, 22(13), 12690-12699. doi: https://doi.org/10.1109/JSEN.2022.3176085
  • Dündar, D. R., Sarıçiçek, İ., Çinar, E. ve Yazıcı, A. (2021). Kestirimci bakımda makine öğrenmesi: Literatür araştırması. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29(2), 256-276. doi: https://doi.org/10.31796/ogummf.873963
  • El Idrissi, A., Derouich, A., Mahfoud, S., El Ouanjli, N., Chantoufi, A., Al-Sumaiti, A. S. ve Mossa, M. A. (2022). Bearing fault diagnosis for an induction motor controlled by an artificial neural network—direct torque control using the hilbert transform. Mathematics, 10(22), 4258. doi: https://doi.org/10.3390/math10224258
  • Ewert, P., Kowalski, C. T. ve Orlowska-Kowalska, T. (2020). Low-cost monitoring and diagnosis system for rolling bearing faults of the induction motor based on neural network approach. Electronics, 9(9), 1334. doi: https://doi.org/10.3390/electronics9091334
  • Han, J.-H., Choi, D.-J., Hong, S.-K. ve Kim, H.-S. (2019). Motor fault diagnosis using CNN based deep learning algorithm considering motor rotating speed. 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), 440-445. 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), sunulmuş bildiri, Tokyo, Japan: IEEE. doi: https://doi.org/10.1109/IEA.2019.8714900
  • Li, G., Deng, C., Wu, J., Chen, Z. ve Xu, X. (2020). Rolling bearing fault diagnosis based on wavelet packet transform and convolutional neural network. Applied Sciences, 10(3), 770. doi: https://doi.org/10.3390/app10030770
  • Liu, D., Cheng, W. ve Wen, W. (2020). Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method. Procedia Manufacturing, 49, 166-172. doi: https://doi.org/10.1016/j.promfg.2020.07.014
  • Mahela, O. P., Sharma, J., Kumar, B., Khan, B. ve Alhelou, H. H. (2020). An algorithm for the protection of distribution feeders using the stockwell and hilbert transforms supported features. CSEE Journal of Power and Energy Systems, 7(6), 1278-1288. doi: https://doi.org/10.17775/CSEEJPES.2020.00170
  • Mekala, N., Jayabharathi, T., Rajkumar, T. ve Darshini, M. P., (2022). Fault analysis of induction motor using LabVIEW. International Journal of Engineering Applied Sciences and Technology, 7(8), 146-150. doi: https://doi.org/10.33564/IJEAST.2022.v07i08.017
  • Pavithra, G. ve Rao, V. V. (2018). Remote monitoring and control of VFD fed three phase induction motor with PLC and LabVIEW software, 329-335. 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), sunulmuş bildiri, Palladam, India: IEEE. doi: https://doi.org/10.1109/I-SMAC.2018.8653657
  • Pietrzak, P. ve Wolkiewicz, M. (2022). Machine learning-based stator current data-driven PMSM stator winding fault diagnosis. Sensors, 22(24), 9668. doi: https://doi.org/10.3390/s22249668
  • Ramu, S. K., Irudayaraj, G. C. R., Subramani, S. ve Subramaniam, U. (2020). Broken rotor bar fault detection using hilbert transform and neural networks applied to direct torque control of induction motor drive. IET Power Electronics, 13(15), 3328-3338. doi: https://doi.org/10.1049/iet-pel.2019.1543
  • Sasireka, M., Vidhyalakshmi, P., Rupasri, M., Sanjai, S. ve Sanjana, G. (2023). Fault identification in induction motor using LabView, 123-128. 2023 Third International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India: IEEE. doi: https://doi.org/10.1109/ICUIS60567.2023.00029
  • Sengamalai, U., Anbazhagan, G., Thamizh Thentral, T. M., Vishnuram, P., Khurshaid, T. ve Kamel, S. (2022). Three phase induction motor drive: a systematic review on dynamic modeling, parameter estimation, and control schemes. Energies, 15(21), 8260. doi: https://doi.org/10.3390/en15218260
  • Tyagi, S. ve Panigrahi, S. K. (2017). A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with artificial neural networks. Journal of Applied and Computational Mechanics, 3(1). doi: https://doi.org/10.22055/jacm.2017.21576.1108
  • Wang, X., Mao, D. ve Li, X. (2021). Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement, 173, 108518. doi: https://doi.org/10.1016/j.measurement.2020.108518
  • Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P. ve Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237. doi: https://doi.org/10.1016/j.ymssp.2018.05.050
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Makineleri ve Sürücüler
Bölüm Araştırma Makalesi
Yazarlar

Eyüp Irgat 0000-0003-0399-0436

Abdurrahman Ünsal 0000-0002-7053-517X

Proje Numarası 118C252
Gönderilme Tarihi 21 Mayıs 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 3

Kaynak Göster

APA Irgat, E., & Ünsal, A. (2025). ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(3), 2032-2041. https://doi.org/10.31796/ogummf.1703595
AMA Irgat E, Ünsal A. ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI. ESOGÜ Müh Mim Fak Derg. Aralık 2025;33(3):2032-2041. doi:10.31796/ogummf.1703595
Chicago Irgat, Eyüp, ve Abdurrahman Ünsal. “ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 3 (Aralık 2025): 2032-41. https://doi.org/10.31796/ogummf.1703595.
EndNote Irgat E, Ünsal A (01 Aralık 2025) ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 3 2032–2041.
IEEE E. Irgat ve A. Ünsal, “ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 3, ss. 2032–2041, 2025, doi: 10.31796/ogummf.1703595.
ISNAD Irgat, Eyüp - Ünsal, Abdurrahman. “ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/3 (Aralık2025), 2032-2041. https://doi.org/10.31796/ogummf.1703595.
JAMA Irgat E, Ünsal A. ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI. ESOGÜ Müh Mim Fak Derg. 2025;33:2032–2041.
MLA Irgat, Eyüp ve Abdurrahman Ünsal. “ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2025, ss. 2032-41, doi:10.31796/ogummf.1703595.
Vancouver Irgat E, Ünsal A. ASENKRON MOTOR RULMAN ARIZA ANALİZİ İÇİN LabVIEW TABANLI GUI TASARIMI. ESOGÜ Müh Mim Fak Derg. 2025;33(3):2032-41.

20873      13565         15461